Existing trends and applications of artificial intelligence in urothelial cancer

被引:3
作者
Malik, Shamir [1 ,2 ]
Wu, Jeremy [1 ]
Bodnariuc, Nicole [1 ,2 ]
Narayana, Krishnateja [3 ]
Gupta, Naveen [4 ,5 ]
Malik, Mikail [1 ]
Kwong, Jethro C. C. [2 ,6 ]
Khondker, Adree [1 ]
Johnson, Alistair E. W. [2 ,7 ,8 ]
Kulkarni, Girish S. [2 ,6 ,9 ,10 ]
机构
[1] Univ Toronto, Temerty Fac Med, Toronto, ON, Canada
[2] Univ Toronto, Temerty Ctr Res & Educ Med, Toronto, ON, Canada
[3] Western Univ, London, ON, Canada
[4] Georgetown Univ, Sch Med, Georgetown Univ Hosp, Washington, DC USA
[5] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Boston, MA USA
[6] Univ Toronto, Dept Surg, Div Urol, Toronto, ON, Canada
[7] Univ Toronto, Dalla Lana Sch Publ Hlth, Div Biostat, Toronto, ON, Canada
[8] Vector Inst, Toronto, ON, Canada
[9] Univ Hlth Network, Princess Margaret Canc Ctr, Dept Surg, Div Urol, Toronto, ON, Canada
[10] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
来源
CUAJ-CANADIAN UROLOGICAL ASSOCIATION JOURNAL | 2023年 / 17卷 / 11期
关键词
NEURAL-NETWORK MODELS; UROLOGY;
D O I
10.5489/cuaj.8322
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
INTRODUCTION: The use of artificial intelligence (AI) in urology is gaining significant traction. While previous reviews of AI applications in urology exist, there have been few attempts to synthesize existing literature on urothelial cancer (UC).METHODS: Comprehensive searches based on the concepts of "AI" and "urothelial cancer" were conducted in MEDLINE, EMBASE, Web of Science, and Scopus. Study selection and data abstraction were conducted by two independent reviewers. Two independent raters assessed study quality in a random sample of 25 studies with the prediction model risk of bias assessment tool (PROBAST) and the standardized reporting of machine learning applications in urology (STREAM-URO) framework.RESULTS: From a database search of 4581 studies, 227 were included. By area of research, 33% focused on image analysis, 26% on genomics, 16% on radiomics, and 15% on clinicopathology. Thematic content analysis identified qualitative trends in AI models employed and variables for feature extraction. Only 19% of studies compared performance of AI models to non-AI methods. All selected studies demonstrated high risk of bias for analysis and overall concern with Cohen's kappa (k)=0.68. Selected studies met 66% of STREAM-URO items, with k=0.76.CONCLUSIONS: The use of AI in UC is a topic of increasing importance; however, there is a need for improved standardized reporting, as evidenced by the high risk of bias and low methodologic quality identified in the included studies.
引用
收藏
页码:E395 / E401
页数:7
相关论文
共 27 条
[1]   Machine Learning for Prediction of Survival Outcomes with Immune-Checkpoint Inhibitors in Urothelial Cancer [J].
Abuhelwa, Ahmad Y. ;
Kichenadasse, Ganessan ;
McKinnon, Ross A. ;
Rowland, Andrew ;
Hopkins, Ashley M. ;
Sorich, Michael J. .
CANCERS, 2021, 13 (09)
[2]  
Arksey H., 2005, International journal of social research methodology, V8, P19, DOI [DOI 10.1080/1364557032000119616, 10.1080/1364557032000119616]
[3]  
Bhindi Bimal, 2021, Can Urol Assoc J, V15, pE424, DOI 10.5489/cuaj.7367
[4]   Clinical Applications of Machine Learning for Urolithiasis and Benign Prostatic Hyperplasia: A Systematic Review [J].
Bouhadana, David ;
Lu, Xing Han ;
Luo, Jack Weixi ;
Assad, Anis ;
Deyirmendjian, Claudia ;
Guennoun, Abbas ;
Nguyen, David-Dan ;
Kwong, Jethro C. C. ;
Chughtai, Bilal ;
Elterman, Dean S. ;
Zorn, Kevin C. ;
Trinh, Quoc-Dien ;
Bhojani, Naeem .
JOURNAL OF ENDOUROLOGY, 2023, 37 (04) :474-494
[5]   Artificial intelligence and neural networks in urology: current clinical applications [J].
Checcucci, Enrico ;
Autorino, Riccardo ;
Cacciamani, Giovanni E. ;
Amparore, Daniele ;
De Cillis, Sabrina ;
Piana, Alberto ;
Piazzolla, Pietro ;
Vezzetti, Enrico ;
Fiori, Cristian ;
Veneziano, Domenico ;
Tewari, Ash ;
Dasgupta, Prokar ;
Hung, Andrew ;
Gill, Inderbir ;
Porpiglia, Francesco .
MINERVA UROLOGICA E NEFROLOGICA, 2020, 72 (01) :49-57
[6]   Current status of artificial intelligence applications in urology and their potential to influence clinical practice [J].
Chen, Jian ;
Remulla, Daphne ;
Nguyen, Jessica H. ;
Aastha, D. ;
Liu, Yan ;
Dasgupta, Prokar ;
Hung, Andrew J. .
BJU INTERNATIONAL, 2019, 124 (04) :567-577
[7]   Artificial Intelligence in Reproductive Urology [J].
Chu, Kevin Y. ;
Nassau, Daniel E. ;
Arora, Himanshu ;
Lokeshwar, Soum D. ;
Madhusoodanan, Vinayak ;
Ramasamy, Ranjith .
CURRENT UROLOGY REPORTS, 2019, 20 (09)
[8]   Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018 [J].
Cumberbatch, Marcus George Kwesi ;
Jubber, Ibrahim ;
Black, Peter C. ;
Esperto, Francesco ;
Figueroa, Jonine D. ;
Kamat, Ashish M. ;
Kiemeney, Lambertus ;
Lotan, Yair ;
Pang, Karl ;
Silverman, Debra T. ;
Znaor, Ariana ;
Catto, James W. F. .
EUROPEAN UROLOGY, 2018, 74 (06) :784-795
[9]   Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials [J].
Esteva, Andre ;
Feng, Jean ;
van der Wal, Douwe ;
Huang, Shih-Cheng ;
Simko, Jeffry P. ;
DeVries, Sandy ;
Chen, Emmalyn ;
Schaeffer, Edward M. ;
Morgan, Todd M. ;
Sun, Yilun ;
Ghorbani, Amirata ;
Naik, Nikhil ;
Nathawani, Dhruv ;
Socher, Richard ;
Michalski, Jeff M. ;
Roach, Mack, III ;
Pisansky, Thomas M. ;
Monson, Jedidiah M. ;
Naz, Farah ;
Wallace, James ;
Ferguson, Michelle J. ;
Bahary, Jean-Paul ;
Zou, James ;
Lungren, Matthew ;
Yeung, Serena ;
Ross, Ashley E. ;
Sandler, Howard M. ;
Tran, Phuoc T. ;
Spratt, Daniel E. ;
Pugh, Stephanie ;
Feng, Felix Y. ;
Mohamad, Osama .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[10]   Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non-muscle-invasive Bladder Cancer [J].
Jobczyk, Mateusz ;
Stawiski, Konrad ;
Kaszkowiak, Marcin ;
Rajwa, Pawel ;
Rozanski, Waldemar ;
Soria, Francesco ;
Shariat, Shahrokh F. ;
Fendler, Wojciech .
EUROPEAN UROLOGY ONCOLOGY, 2022, 5 (01) :109-112