Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond

被引:222
|
作者
Xiong, Yuecheng [1 ,2 ]
Wang, Yunhao [1 ]
Zhou, Jingwen [1 ,2 ]
Liu, Fu [1 ]
Hao, Fengkun [1 ]
Fan, Zhanxi [1 ,2 ,3 ]
机构
[1] City Univ Hong Kong, Dept Chem, Kowloon, Hong Kong 999077, Peoples R China
[2] City Univ Hong Kong, Hong Kong Branch, Natl Precious Met Mat Engn Res Ctr NPMM, Kowloon, Hong Kong 999077, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
ammonia; C-N coupling; electrocatalysis; energy conversion; nitrate reduction reaction; ELECTROCATALYTIC REDUCTION; NITROGEN REDUCTION; CARBON-DIOXIDE; WASTE-WATER; THEORETICAL EVALUATION; HIGH-EFFICIENCY; HABER-BOSCH; ELECTROSYNTHESIS; PERFORMANCE; CATALYSTS;
D O I
10.1002/adma.202304021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging C-N coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry. The nitrogen cycle in global ecosystem has been greatly disrupted by intensive anthropogenic activities. Electrochemical nitrate reduction reaction (NO3RR) provides a promising strategy to green ammonia production, promoting sustainable nitrogen cycle. This review presents the recent important advances of electrochemical NO3RR and pushes the boundaries of NO3RR beyond ammonia synthesis by incorporating C-N coupling processes and novel N species-based batteries.image
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Recent advances in nickel-based catalysts for electrochemical nitrate reduction to ammonia
    Wang, An
    Ye, Jingrui
    Yang, Yilin
    He, Guangyu
    Chen, Haiqun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 132 : 66 - 79
  • [42] Highly active iron phosphide catalysts for selective electrochemical nitrate reduction to ammonia
    Chouki, Takwa
    Machreki, Manel
    Rutkowska, Iwona A.
    Rytelewska, Beata
    Kulesza, Pawel J.
    Tyuliev, Georgi
    Harb, Moussab
    Azofra, Luis Miguel
    Emin, Saim
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [43] Copper confined in vesicle-like BCN cavities promotes electrochemical reduction of nitrate to ammonia in water
    Zhao, Xue
    Hu, Guangzhi
    Tan, Fang
    Zhang, Shusheng
    Wang, Xinzhong
    Hu, Xun
    Kuklin, Artem V.
    Baryshnikov, Glib V.
    Agren, Hans
    Zhou, Xiaohai
    Zhang, Haibo
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (41) : 23675 - 23686
  • [44] Emerging Applications, Developments, Prospects, and Challenges of Electrochemical Nitrate-to-Ammonia Conversion
    Chen, Wenda
    Yang, Xiuyuan
    Chen, Zhida
    Ou, Zhijun
    Hu, Jiangtao
    Xu, Yuan
    Li, Yongliang
    Ren, Xiangzhong
    Ye, Shenghua
    Qiu, Jieshan
    Liu, Jianhong
    Zhang, Qianling
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (29)
  • [45] Progress and prospects of electrochemical reduction of nitrate to restore the nitrogen cycle
    Wu, Yudong
    Lu, Kun-Kun
    Xu, Lian-Hua
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (33) : 17392 - 17417
  • [46] Recent development of electrochemical nitrate reduction to ammonia: A mini review
    Lu, Xingmei
    Song, Haoqiang
    Cai, Jinmeng
    Lu, Siyu
    ELECTROCHEMISTRY COMMUNICATIONS, 2021, 129
  • [47] Material strategies in the electrochemical nitrate reduction reaction to ammonia production
    Jung, Wonsang
    Hwang, Yun Jeong
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (18) : 6803 - 6823
  • [48] Boronization of Nickel Foam for Sustainable Electrochemical Reduction of Nitrate to Ammonia
    Xue, Zhong-Hua
    Shen, Han-Cheng
    Chen, Peirong
    Pan, Guang-Xue
    Zhang, Wei-Wei
    Zhang, Wei-Meng
    Zhang, Shi-Nan
    Li, Xin-Hao
    Yavuz, Cafer T.
    ACS ENERGY LETTERS, 2023, 8 (09) : 3843 - 3851
  • [49] Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia
    Zhang, Shuo
    Wu, Jianghua
    Zheng, Mengting
    Jin, Xin
    Shen, Zihan
    Li, Zhonghua
    Wang, Yanjun
    Wang, Quan
    Wang, Xuebin
    Wei, Hui
    Zhang, Jiangwei
    Wang, Peng
    Zhang, Shanqing
    Yu, Liyan
    Dong, Lifeng
    Zhu, Qingshan
    Zhang, Huigang
    Lu, Jun
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [50] Electrochemical Nitrate Reduction to Ammonia on CuCo Nanowires at Practical Level
    Zhang, Kouer
    Sun, Pengting
    Huang, Yulun
    Tang, Mingcong
    Zou, Xiaohong
    Pan, Zhefei
    Huo, Xiaoyu
    Wu, Jie
    Lin, Chunche
    Sun, Zhongti
    Wan, Yangyang
    Zhang, Xiao
    An, Liang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (44)