Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond

被引:214
|
作者
Xiong, Yuecheng [1 ,2 ]
Wang, Yunhao [1 ]
Zhou, Jingwen [1 ,2 ]
Liu, Fu [1 ]
Hao, Fengkun [1 ]
Fan, Zhanxi [1 ,2 ,3 ]
机构
[1] City Univ Hong Kong, Dept Chem, Kowloon, Hong Kong 999077, Peoples R China
[2] City Univ Hong Kong, Hong Kong Branch, Natl Precious Met Mat Engn Res Ctr NPMM, Kowloon, Hong Kong 999077, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
ammonia; C-N coupling; electrocatalysis; energy conversion; nitrate reduction reaction; ELECTROCATALYTIC REDUCTION; NITROGEN REDUCTION; CARBON-DIOXIDE; WASTE-WATER; THEORETICAL EVALUATION; HIGH-EFFICIENCY; HABER-BOSCH; ELECTROSYNTHESIS; PERFORMANCE; CATALYSTS;
D O I
10.1002/adma.202304021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging C-N coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry. The nitrogen cycle in global ecosystem has been greatly disrupted by intensive anthropogenic activities. Electrochemical nitrate reduction reaction (NO3RR) provides a promising strategy to green ammonia production, promoting sustainable nitrogen cycle. This review presents the recent important advances of electrochemical NO3RR and pushes the boundaries of NO3RR beyond ammonia synthesis by incorporating C-N coupling processes and novel N species-based batteries.image
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia
    Shuo Zhang
    Jianghua Wu
    Mengting Zheng
    Xin Jin
    Zihan Shen
    Zhonghua Li
    Yanjun Wang
    Quan Wang
    Xuebin Wang
    Hui Wei
    Jiangwei Zhang
    Peng Wang
    Shanqing Zhang
    Liyan Yu
    Lifeng Dong
    Qingshan Zhu
    Huigang Zhang
    Jun Lu
    Nature Communications, 14
  • [22] Material strategies in the electrochemical nitrate reduction reaction to ammonia production
    Jung, Wonsang
    Hwang, Yun Jeong
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (18) : 6803 - 6823
  • [23] Electrochemical reduction of nitrate to Ammonia: Recent progress and future directions
    Truong, Nam Hoang
    Kim, Jin-Soo
    Lim, Jonghun
    Shin, Hyeyoung
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [24] Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production
    Islam, Md. Monjorul
    Abu Nayem, S. M.
    Shah, Syed Shaheen
    Islam, Md. Zahidul
    Aziz, Md. Abdul
    Ahammad, A. J. Saleh
    CHEMICAL RECORD, 2025, 25 (02):
  • [25] Electrochemical Nitrate Reduction to Ammonia on CuCo Nanowires at Practical Level
    Zhang, Kouer
    Sun, Pengting
    Huang, Yulun
    Tang, Mingcong
    Zou, Xiaohong
    Pan, Zhefei
    Huo, Xiaoyu
    Wu, Jie
    Lin, Chunche
    Sun, Zhongti
    Wan, Yangyang
    Zhang, Xiao
    An, Liang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (44)
  • [26] Electrocatalytic nitrate reduction: The synthesis, recovery and upgradation of ammonia
    Chen, Yifan
    Xu, Bincheng
    Laszlo, Krisztina
    Wang, Ying
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [27] Sustainable ammonia synthesis: opportunities for electrocatalytic nitrate reduction
    Jiang, Haoxuan
    Li, Tianyu
    Gao, Yuting
    Fan, Jieping
    Gan, Dingwei
    Yuan, Shuai
    Hong, Longfei
    Feng, Yue
    Sun, Jing
    Song, Qiang
    Zhang, Tianqi
    Jalili, Ali Rouhzollah
    Cullen, Patrick J.
    Zhou, Renwu
    JOURNAL OF ENERGY CHEMISTRY, 2025, 105 : 630 - 668
  • [28] Potential Dependence of Ammonia Selectivity of Electrochemical Nitrate Reduction on Copper Oxide
    Yang, Rong
    Li, Huan
    Long, Jun
    Jing, Huijuan
    Fu, Xiaoyan
    Xiao, Jianping
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (43) : 14343 - 14350
  • [29] Mesoporous PdN Alloy Nanocubes for Efficient Electrochemical Nitrate Reduction to Ammonia
    Sun, Lizhi
    Liu, Ben
    ADVANCED MATERIALS, 2023, 35 (01)
  • [30] Electron engineering of nickel phosphide for Niδ+ in electrochemical nitrate reduction to ammonia
    Jie Hu
    Hao Huang
    Miao Yu
    Shuang Wang
    Jinping Li
    Nano Research, 2024, 17 : 4864 - 4871