Voltage-Mode Ferroelectric Synapse for Neuromorphic Computing

被引:2
|
作者
Luo, Jie [1 ]
Tian, Guo [2 ,3 ]
Zhang, Ding-Guo [1 ]
Zhang, Xing-Chen [2 ,3 ]
Lu, Zhen-Ni [1 ]
Zhang, Zhong-Da [1 ]
Cai, Jia-Wei [1 ]
Zhong, Ya-Nan [1 ]
Xu, Jian-Long [1 ]
Gao, Xu [1 ]
Wang, Sui-Dong [1 ,4 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[2] South China Normal Univ, Inst Adv Mat, South China Acad Adv Optoelect, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[4] Macau Univ Sci & Technol, MUST SUDA Joint Res Ctr Adv Funct Mat, Macao Inst Mat Sci & Engn MIMSE, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
synaptic devices; neuromorphiccomputing; ferroelectricity; P(VDF-TrFE-CTFE); piezoresponse forcemicroscopy; ORGANIC TRANSISTOR; MEMORY; PLASTICITY; MOBILITY; CHARGE;
D O I
10.1021/acsami.3c09506
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ferroelectric materials with a modulable polarization extent hold promise for exploring voltage-driven neuromorphic hardware, in which direct current flow can be minimized. Utilizing a single active layer of an insulating ferroelectric polymer, we developed a voltage-mode ferroelectric synapse that can continuously and reversibly update its states. The device states are straightforwardly manifested in the form of variable output voltage, enabling large-scale direct cascading of multiple ferroelectric synapses to build a deep physical neural network. Such a neural network based on potential superposition rather than current flow is analogous to the biological counterpart driven by action potentials in the brain. A high accuracy of over 97% for the simulation of handwritten digit recognition is achieved using the voltage-mode neural network. The controlled ferroelectric polarization, revealed by piezoresponse force microscopy, turns out to be responsible for the synaptic weight updates in the ferroelectric synapses. The present work demonstrates an alternative strategy for the design and construction of emerging artificial neural networks.
引用
收藏
页码:48452 / 48461
页数:10
相关论文
共 50 条
  • [41] SINGLE CFOA-BASED VOLTAGE-MODE
    Tangsrirat, Worapong
    ELECTRONICS WORLD, 2010, 116 (1888): : 44 - 45
  • [42] FTFN based universal voltage-mode filter
    Shah, NA
    Malik, MA
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2003, 41 (10) : 814 - 816
  • [43] Novel voltage-mode universal biquad filter
    Chen, Hua-Pin
    ELECTRONICS WORLD, 2006, 112 (1842): : 41 - 41
  • [44] On the realisation of voltage-mode filters using CDBA
    Sedef, H
    Acar, C
    FREQUENZ, 2000, 54 (9-10) : 198 - 202
  • [45] Reconfigurable Neuromorphic Computing System with Memristor-Based Synapse Design
    Beiye Liu
    Yiran Chen
    Bryant Wysocki
    Tingwen Huang
    Neural Processing Letters, 2015, 41 : 159 - 167
  • [46] Compensated Ferrimagnet Based Artificial Synapse and Neuron for Ultrafast Neuromorphic Computing
    Liu, Jiahao
    Xu, Teng
    Feng, Hongmei
    Zhao, Le
    Tang, Jianshi
    Fang, Liang
    Jiang, Wanjun
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (01)
  • [47] An Interface-Type Memristive Device for Artificial Synapse and Neuromorphic Computing
    Kunwar, Sundar
    Jernigan, Zachary
    Hughes, Zach
    Somodi, Chase
    Saccone, Michael D. D.
    Caravelli, Francesco
    Roy, Pinku
    Zhang, Di
    Wang, Haiyan
    Jia, Quanxi
    MacManus-Driscoll, Judith L. L.
    Kenyon, Garrett
    Sornborger, Andrew
    Nie, Wanyi
    Chen, Aiping
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (08)
  • [48] Photoelectric Synapse Based on InGaZnO Nanofibers for High Precision Neuromorphic Computing
    Zhu, Yixin
    Mao, Huiwu
    Zhu, Ying
    Zhu, Li
    Chen, Chunsheng
    Wang, Xiangjing
    Ke, Shuo
    Fu, Chuanyu
    Wan, Changjin
    Wan, Qing
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (04) : 651 - 654
  • [49] A TaOx-Based Electronic Synapse With High Precision for Neuromorphic Computing
    Liu, Sen
    Li, Kun
    Sun, Yi
    Zhu, Xi
    Li, Zhiwei
    Song, Bing
    Liu, Haijun
    Li, Qingjiang
    IEEE ACCESS, 2019, 7 : 184700 - 184706
  • [50] Reconfigurable Neuromorphic Computing System with Memristor-Based Synapse Design
    Liu, Beiye
    Chen, Yiran
    Wysocki, Bryant
    Huang, Tingwen
    NEURAL PROCESSING LETTERS, 2015, 41 (02) : 159 - 167