Voltage-Mode Ferroelectric Synapse for Neuromorphic Computing

被引:2
|
作者
Luo, Jie [1 ]
Tian, Guo [2 ,3 ]
Zhang, Ding-Guo [1 ]
Zhang, Xing-Chen [2 ,3 ]
Lu, Zhen-Ni [1 ]
Zhang, Zhong-Da [1 ]
Cai, Jia-Wei [1 ]
Zhong, Ya-Nan [1 ]
Xu, Jian-Long [1 ]
Gao, Xu [1 ]
Wang, Sui-Dong [1 ,4 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[2] South China Normal Univ, Inst Adv Mat, South China Acad Adv Optoelect, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[4] Macau Univ Sci & Technol, MUST SUDA Joint Res Ctr Adv Funct Mat, Macao Inst Mat Sci & Engn MIMSE, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
synaptic devices; neuromorphiccomputing; ferroelectricity; P(VDF-TrFE-CTFE); piezoresponse forcemicroscopy; ORGANIC TRANSISTOR; MEMORY; PLASTICITY; MOBILITY; CHARGE;
D O I
10.1021/acsami.3c09506
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ferroelectric materials with a modulable polarization extent hold promise for exploring voltage-driven neuromorphic hardware, in which direct current flow can be minimized. Utilizing a single active layer of an insulating ferroelectric polymer, we developed a voltage-mode ferroelectric synapse that can continuously and reversibly update its states. The device states are straightforwardly manifested in the form of variable output voltage, enabling large-scale direct cascading of multiple ferroelectric synapses to build a deep physical neural network. Such a neural network based on potential superposition rather than current flow is analogous to the biological counterpart driven by action potentials in the brain. A high accuracy of over 97% for the simulation of handwritten digit recognition is achieved using the voltage-mode neural network. The controlled ferroelectric polarization, revealed by piezoresponse force microscopy, turns out to be responsible for the synaptic weight updates in the ferroelectric synapses. The present work demonstrates an alternative strategy for the design and construction of emerging artificial neural networks.
引用
收藏
页码:48452 / 48461
页数:10
相关论文
共 50 条
  • [31] Tunable Voltage-mode Subthreshold CMOS Neuron
    Ronchini, Margherita
    Zamani, Milad
    Farkhani, Hooman
    Moradi, Farshad
    2020 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2020), 2020, : 252 - 257
  • [32] VOLTAGE-MODE CMOS QUATERNARY LATCH CIRCUIT
    CURRENT, KW
    ELECTRONICS LETTERS, 1994, 30 (23) : 1928 - 1929
  • [33] REALIZATION OF VOLTAGE-MODE BIQUADS USING CCIIS
    HIGASHIMURA, M
    ELECTRONICS LETTERS, 1991, 27 (15) : 1345 - 1346
  • [34] Multifunction Voltage-Mode Filter Based on CDTAs
    Shah, N. A.
    Quadri, Munazah
    Iqbal, S. Z.
    JOURNAL OF ACTIVE AND PASSIVE ELECTRONIC DEVICES, 2012, 7 (1-2): : 45 - 50
  • [35] Voltage-mode active-only biquad
    Tsukutani, T
    Higashimura, M
    Sumi, Y
    Fukui, Y
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2000, 87 (12) : 1435 - 1442
  • [36] Multilevel Ferroelectric Domain Wall Memory for Neuromorphic Computing
    Shen, Bowen
    Sun, Haoran
    Hu, Xianyu
    Sun, Jie
    Jiang, Jun
    Zhang, Zengxing
    Jiang, Anquan
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (30)
  • [37] Ferroelectric-based synapses and neurons for neuromorphic computing
    Covi, Erika
    Mulaosmanovic, Halid
    Max, Benjamin
    Slesazeck, Stefan
    Mikolajick, Thomas
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (01):
  • [38] Voltage-mode Quaternary FPGAs: An Evaluation of Interconnections
    Lazzari, Cristiano
    Flores, Paulo
    Monteiro, Jose
    Carro, Luigi
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 869 - 872
  • [39] Electronically tunable multifunction voltage-mode filter
    Chen, Hua-Pin
    ELECTRONICS WORLD, 2008, 114 (1869): : 35 - 36
  • [40] New Voltage-Mode Bandpass Shadow Filter
    Abuelma'atti, Muhammad Taher
    Almutairi, Naif
    2016 13TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2016, : 412 - 415