Voltage-Mode Ferroelectric Synapse for Neuromorphic Computing

被引:2
|
作者
Luo, Jie [1 ]
Tian, Guo [2 ,3 ]
Zhang, Ding-Guo [1 ]
Zhang, Xing-Chen [2 ,3 ]
Lu, Zhen-Ni [1 ]
Zhang, Zhong-Da [1 ]
Cai, Jia-Wei [1 ]
Zhong, Ya-Nan [1 ]
Xu, Jian-Long [1 ]
Gao, Xu [1 ]
Wang, Sui-Dong [1 ,4 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[2] South China Normal Univ, Inst Adv Mat, South China Acad Adv Optoelect, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[4] Macau Univ Sci & Technol, MUST SUDA Joint Res Ctr Adv Funct Mat, Macao Inst Mat Sci & Engn MIMSE, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
synaptic devices; neuromorphiccomputing; ferroelectricity; P(VDF-TrFE-CTFE); piezoresponse forcemicroscopy; ORGANIC TRANSISTOR; MEMORY; PLASTICITY; MOBILITY; CHARGE;
D O I
10.1021/acsami.3c09506
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ferroelectric materials with a modulable polarization extent hold promise for exploring voltage-driven neuromorphic hardware, in which direct current flow can be minimized. Utilizing a single active layer of an insulating ferroelectric polymer, we developed a voltage-mode ferroelectric synapse that can continuously and reversibly update its states. The device states are straightforwardly manifested in the form of variable output voltage, enabling large-scale direct cascading of multiple ferroelectric synapses to build a deep physical neural network. Such a neural network based on potential superposition rather than current flow is analogous to the biological counterpart driven by action potentials in the brain. A high accuracy of over 97% for the simulation of handwritten digit recognition is achieved using the voltage-mode neural network. The controlled ferroelectric polarization, revealed by piezoresponse force microscopy, turns out to be responsible for the synaptic weight updates in the ferroelectric synapses. The present work demonstrates an alternative strategy for the design and construction of emerging artificial neural networks.
引用
收藏
页码:48452 / 48461
页数:10
相关论文
共 50 条
  • [21] Voltage-mode universal biquad filter
    不详
    ELECTRONICS WORLD, 2007, 113 (1858): : 43 - 43
  • [22] Ferroelectric memristor and its neuromorphic computing applications
    Du, Junmei
    Sun, Bai
    Yang, Chuan
    Cao, Zelin
    Zhou, Guangdong
    Wang, Hongyan
    Chen, Yuanzheng
    MATERIALS TODAY PHYSICS, 2025, 50
  • [23] CMOS voltage-mode analog multiplier
    Boonchu, Boonchai
    Surakampontorn, Wanlop
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 1989 - 1992
  • [24] Conversion of voltage-mode biquads to current-mode
    Aronhime, PB
    Lata, ZJ
    38TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 1054 - 1057
  • [25] Design-Technology Co-Optimizations for Symmetric Linear Synapse Behaviors in Ferroelectric FET Based Neuromorphic Computing
    Zhao, Guoqing
    Wu, Shuhao
    Zhan, Xuepeng
    Tang, Mingfeng
    Wei, Wei
    Tai, Lu
    Wu, Jixuan
    Chai, Junshuai
    Xu, Hao
    Wang, Xiaolei
    Chen, Jiezhi
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2022, 21 : 747 - 751
  • [26] LiSiOX-Based Analog Memristive Synapse for Neuromorphic Computing
    Chen, Jia
    Lin, Chih-Yang
    Li, Yi
    Qin, Chao
    Lu, Ke
    Wang, Jie-Ming
    Chen, Chun-Kuei
    He, Yu-Hui
    Chang, Ting-Chang
    Sze, Simon M.
    Miao, Xiang-Shui
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (04) : 542 - 545
  • [27] Soft Biomaterials Based Flexible Artificial Synapse for Neuromorphic Computing
    Guo, Tao
    Ge, Jiawei
    Sun, Bai
    Pan, Kangqiang
    Pan, Zhao
    Wei, Lan
    Yan, Yong
    Zhou, Y. Norman
    Wu, Yimin A.
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (10)
  • [28] Optoelectronic Synapse Enabled by Defect Engineering of Tellurene for Neuromorphic Computing
    Guo, Junxiong
    Huang, Junyan
    Gu, Shuyi
    Lin, Lin
    Zhang, Yafei
    Wang, Xiang
    Liu, Yu
    Gong, Tianxun
    Lin, Yuan
    Yu, Bin
    Huang, Wen
    Zhang, Xiaosheng
    IEEE ELECTRON DEVICE LETTERS, 2025, 46 (01) : 68 - 71
  • [29] Metallopolymeric Memristor Based Artificial Optoelectronic Synapse for Neuromorphic Computing
    Cheng, Xiaozhe
    Qin, Zhitao
    Guo, Hongen
    Dou, Zhitao
    Lian, Hong
    Fan, Jianfeng
    Qu, Yongquan
    Dong, Qingchen
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (06) : 4345 - 4355
  • [30] Ferroelectric thin film for a capacitor-type synapse in neuromorphic systems
    Ishisaki, Yuma
    Umemura, Hiroki
    Matsukawa, Daiki
    Tokumitsu, Eisuke
    Kimura, Mutsumi
    PROCEEDINGS OF AM-FPD 21: THE TWENTY-EIGHTH INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES - TFT TECHNOLOGIES AND FPD MATERIALS, 2021, : 89 - 91