Voltage-Mode Ferroelectric Synapse for Neuromorphic Computing

被引:2
|
作者
Luo, Jie [1 ]
Tian, Guo [2 ,3 ]
Zhang, Ding-Guo [1 ]
Zhang, Xing-Chen [2 ,3 ]
Lu, Zhen-Ni [1 ]
Zhang, Zhong-Da [1 ]
Cai, Jia-Wei [1 ]
Zhong, Ya-Nan [1 ]
Xu, Jian-Long [1 ]
Gao, Xu [1 ]
Wang, Sui-Dong [1 ,4 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[2] South China Normal Univ, Inst Adv Mat, South China Acad Adv Optoelect, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, South China Acad Adv Optoelect, Guangdong Prov Key Lab Opt Informat Mat & Technol, Guangzhou 510006, Peoples R China
[4] Macau Univ Sci & Technol, MUST SUDA Joint Res Ctr Adv Funct Mat, Macao Inst Mat Sci & Engn MIMSE, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
synaptic devices; neuromorphiccomputing; ferroelectricity; P(VDF-TrFE-CTFE); piezoresponse forcemicroscopy; ORGANIC TRANSISTOR; MEMORY; PLASTICITY; MOBILITY; CHARGE;
D O I
10.1021/acsami.3c09506
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ferroelectric materials with a modulable polarization extent hold promise for exploring voltage-driven neuromorphic hardware, in which direct current flow can be minimized. Utilizing a single active layer of an insulating ferroelectric polymer, we developed a voltage-mode ferroelectric synapse that can continuously and reversibly update its states. The device states are straightforwardly manifested in the form of variable output voltage, enabling large-scale direct cascading of multiple ferroelectric synapses to build a deep physical neural network. Such a neural network based on potential superposition rather than current flow is analogous to the biological counterpart driven by action potentials in the brain. A high accuracy of over 97% for the simulation of handwritten digit recognition is achieved using the voltage-mode neural network. The controlled ferroelectric polarization, revealed by piezoresponse force microscopy, turns out to be responsible for the synaptic weight updates in the ferroelectric synapses. The present work demonstrates an alternative strategy for the design and construction of emerging artificial neural networks.
引用
收藏
页码:48452 / 48461
页数:10
相关论文
共 50 条
  • [1] Multisensory Ferroelectric Semiconductor Synapse for Neuromorphic Computing
    Zeng, Jinhua
    Feng, Guangdi
    Wu, Guangjian
    Liu, Jianquan
    Zhao, Qianru
    Wang, Huiting
    Wu, Shuaiqin
    Wang, Xudong
    Chen, Yan
    Han, Suting
    Tian, Bobo
    Duan, Chungang
    Lin, Tie
    Ge, Jun
    Shen, Hong
    Meng, Xiangjian
    Chu, Junhao
    Wang, Jianlu
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (19)
  • [2] Ferroelectric artificial synapse for neuromorphic computing and flexible applications
    Li, Qing-Xuan
    Liu, Yi-Lun
    Cao, Yuan-Yuan
    Wang, Tian-Yu
    Zhu, Hao
    Ji, Li
    Liu, Wen-Jun
    Sun, Qing-Qing
    Zhang, David Wei
    Chen, Lin
    FUNDAMENTAL RESEARCH, 2023, 3 (06): : 960 - 966
  • [3] Ferroelectric polymer-based artificial synapse for neuromorphic computing
    Kim, Sungjun
    Heo, Keun
    Lee, Sunghun
    Seo, Seunghwan
    Kim, Hyeongjun
    Cho, Jeongick
    Lee, Hyunkyu
    Lee, Kyeong-Bae
    Park, Jin-Hong
    NANOSCALE HORIZONS, 2021, 6 (02) : 139 - 147
  • [4] CMOS Compatible Low Power Consumption Ferroelectric Synapse for Neuromorphic Computing
    Li, Zhenhai
    Meng, Jialin
    Yu, Jiajie
    Liu, Yongkai
    Wang, Tianyu
    Liu, Pei
    Chen, Shiyou
    Zhu, Hao
    Sun, Qingqing
    Zhang, David Wei
    Chen, Lin
    IEEE ELECTRON DEVICE LETTERS, 2023, 44 (03) : 532 - 535
  • [5] Synapse with Diverse Plasticity in Ferroelectric BaTiO3 Thin Films for Neuromorphic Computing
    Yi, Xiao
    Duan, Mengyuan
    Li, Ang
    Yang, Guanghong
    Zhang, Weifeng
    Jia, Caihong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (05): : 2231 - 2239
  • [6] Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing
    Zhong, Gaokuo
    Zi, Mengfei
    Ren, Chuanlai
    Xiao, Qun
    Tang, Mingkai
    Wei, Liyu
    An, Feng
    Xie, Shuhong
    Wang, Jinbin
    Zhong, Xiangli
    Huang, Mingqiang
    Li, Jiangyu
    APPLIED PHYSICS LETTERS, 2020, 117 (09)
  • [7] Flexible aluminum-doped hafnium oxide ferroelectric synapse devices for neuromorphic computing
    Li, Zhenhai
    Wang, Tianyu
    Meng, Jialin
    Zhu, Hao
    Sun, Qingqing
    Zhang, David Wei
    Chen, Lin
    MATERIALS HORIZONS, 2023, 10 (09) : 3643 - 3650
  • [8] An ultrasmall organic synapse for neuromorphic computing
    Liu, Shuzhi
    Zeng, Jianmin
    Wu, Zhixin
    Hu, Han
    Xu, Ao
    Huang, Xiaohe
    Chen, Weilin
    Chen, Qilai
    Yu, Zhe
    Zhao, Yinyu
    Wang, Rong
    Han, Tingting
    Li, Chao
    Gao, Pingqi
    Kim, Hyunwoo
    Baik, Seung Jae
    Zhang, Ruoyu
    Zhang, Zhang
    Zhou, Peng
    Liu, Gang
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [9] An ultrasmall organic synapse for neuromorphic computing
    Shuzhi Liu
    Jianmin Zeng
    Zhixin Wu
    Han Hu
    Ao Xu
    Xiaohe Huang
    Weilin Chen
    Qilai Chen
    Zhe Yu
    Yinyu Zhao
    Rong Wang
    Tingting Han
    Chao Li
    Pingqi Gao
    Hyunwoo Kim
    Seung Jae Baik
    Ruoyu Zhang
    Zhang Zhang
    Peng Zhou
    Gang Liu
    Nature Communications, 14
  • [10] A Volatile RRAM Synapse for Neuromorphic Computing
    Covi, E.
    Lin, Y. -H.
    Wang, W.
    Stecconi, T.
    Milo, V.
    Bricalli, A.
    Ambrosi, E.
    Pedretti, G.
    Tseng, T. -Y.
    Ielmini, D.
    2019 26TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2019, : 903 - 906