Adipose Tissue Characterization With Electrical Impedance Spectroscopy and Machine Learning

被引:0
|
作者
Dapsance, Florian [1 ,2 ,3 ]
Hou, Jie [1 ,4 ]
Dufour, Damien [2 ,3 ]
Boccara, Charlotte [2 ,3 ]
Briand, Nolwenn [2 ]
Martinsen, Orjan Grottem [1 ,4 ]
机构
[1] Univ Oslo, Dept Phys, Oslo, Norway
[2] Univ Oslo, Inst Basic Med Sci, Dept Mol Med, NO-0316 Oslo, Norway
[3] Univ Oslo, Ctr Mol Med Norway, NO-0316 Oslo, Norway
[4] Oslo Univ Hosp, Dept Clin & Biomed Engn, N-0424 Oslo, Norway
关键词
Impedance; Mice; Bioimpedance; Frequency measurement; Machine learning; Impedance measurement; Spectroscopy; Sensor applications; adipose tissue; bioimpedance; electrical impedance spectroscopy (EIS); machine learning;
D O I
10.1109/LSENS.2023.3317921
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biological tissues have variable passive electrical properties depending on their cellular constitution. Electrical impedance spectroscopy (EIS) is commonly used to monitor cell and tissue characteristics. By measuring the impedance of a sample at various frequencies, it is possible to collect information regarding cell size and shape, cell membrane properties, or cytoplasm conductivity. From the perspective of longitudinal structural monitoring, bioimpedance measurements outrank traditional tissue analysis methods, such as fixation and slicing, owing to their nondestructive nature. Machine learning can be used to automatically process the impedance data and make real-time classifications of tissue types. Here, we present preliminary results on ex-vivo mouse adipose tissue measurements using EIS and further data processing and classification using machine learning models.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems
    Bera, Tushar Kanti
    Nagaraju, J.
    Lubineau, Gilles
    JOURNAL OF VISUALIZATION, 2016, 19 (04) : 691 - 713
  • [42] Machine Learning for the Analysis of Conductivity From Mono Frequency Electrical Impedance Mammography as a Breast Cancer Risk Factor
    Romero Coripuna, Rosario Lissiet
    Hernandez Farias, Delia Irazu
    Murillo Ortiz, Blanca Olivia
    Padierna, Luis Carlos
    Fraga, Teodoro Cordova
    IEEE ACCESS, 2021, 9 : 152397 - 152407
  • [43] A filter-predictor polynomial feature based machine learning approach to predicting preterm birth from cervical electrical impedance spectroscopy
    Tian, David
    Lang, Zi-Qiang
    Di Zhang, Di
    Anumba, Dilly O.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 80
  • [44] Handheld macroscopic Raman spectroscopy imaging instrument for machine-learning-based molecular tissue margins characterization
    Daoust, Francois
    Nguyen, Tien
    Orsini, Patrick
    Bismuth, Jacques
    de Denus-Baillargeon, Marie-Maude
    Veilleux, Israel
    Wetter, Alexandre
    Mckoy, Philippe
    Dicaire, Isabelle
    Massabki, Maroun
    Petrecca, Kevin
    Leblond, Frederic
    JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (02)
  • [45] An Investigation Into the Impact of Impedance Measurement Parameters on the Limit of Detection of QCM-D Using Machine Learning Model Chaining
    Kirimli, Ceyhun E.
    Elgun, Elcim
    Yuksel, Mehmet Mert
    Tugtag, Selin Yagmur
    IEEE SENSORS JOURNAL, 2025, 25 (03) : 5688 - 5696
  • [46] Feasibility of Using Electrical Impedance Spectroscopy for Assessing Biological Cell Damage during Freezing and Thawing
    Abie, Sisay Mebre
    Martinsen, Orjan Grottem
    Egelandsdal, Bjorg
    Hou, Jie
    Bjerke, Froydis
    Mason, Alex
    Munch, Daniel
    SENSORS, 2021, 21 (12)
  • [47] Object Analysis Using Machine Learning to Solve Inverse Problem in Electrical Impedance Tomography
    Rymarczyk, Tomasz
    Kozlowski, Edward
    Klosowski, Grzegorz
    2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 220 - 225
  • [48] Comparison of Machine Learning Classifiers for the Detection of Breast Cancer in an Electrical Impedance Tomography Setup
    Rixen, Joeran
    Blass, Nico
    Lyra, Simon
    Leonhardt, Steffen
    ALGORITHMS, 2023, 16 (11)
  • [49] Optimal Parameter Design of DAC-Based Sinusoidal Signal Generators for Electrical Impedance Spectroscopy
    Cheon, Song-, I
    Kweon, Soon-Jae
    Aberra, Aida
    Je, Minkyu
    Ha, Sohmyung
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [50] Machine learning assisted analysis of equivalent circuit usage in electrochemical impedance spectroscopy applications
    Klemm, Carl Philipp
    Froemling, Till
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (16) : 1380 - 1389