Adipose Tissue Characterization With Electrical Impedance Spectroscopy and Machine Learning

被引:0
|
作者
Dapsance, Florian [1 ,2 ,3 ]
Hou, Jie [1 ,4 ]
Dufour, Damien [2 ,3 ]
Boccara, Charlotte [2 ,3 ]
Briand, Nolwenn [2 ]
Martinsen, Orjan Grottem [1 ,4 ]
机构
[1] Univ Oslo, Dept Phys, Oslo, Norway
[2] Univ Oslo, Inst Basic Med Sci, Dept Mol Med, NO-0316 Oslo, Norway
[3] Univ Oslo, Ctr Mol Med Norway, NO-0316 Oslo, Norway
[4] Oslo Univ Hosp, Dept Clin & Biomed Engn, N-0424 Oslo, Norway
关键词
Impedance; Mice; Bioimpedance; Frequency measurement; Machine learning; Impedance measurement; Spectroscopy; Sensor applications; adipose tissue; bioimpedance; electrical impedance spectroscopy (EIS); machine learning;
D O I
10.1109/LSENS.2023.3317921
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biological tissues have variable passive electrical properties depending on their cellular constitution. Electrical impedance spectroscopy (EIS) is commonly used to monitor cell and tissue characteristics. By measuring the impedance of a sample at various frequencies, it is possible to collect information regarding cell size and shape, cell membrane properties, or cytoplasm conductivity. From the perspective of longitudinal structural monitoring, bioimpedance measurements outrank traditional tissue analysis methods, such as fixation and slicing, owing to their nondestructive nature. Machine learning can be used to automatically process the impedance data and make real-time classifications of tissue types. Here, we present preliminary results on ex-vivo mouse adipose tissue measurements using EIS and further data processing and classification using machine learning models.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] A comparative study of selected machine learning algorithms for electrical impedance tomography
    Dziadosz, Marcin
    Mazurek, Mariusz
    Stefaniak, Barbara
    Wojcik, Dariusz
    Gauda, Konrad
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (04): : 237 - 240
  • [32] Non-destructive characterization of bone mineral content by machine learning-assisted electrochemical impedance spectroscopy
    Banerjee, Aihik
    Tai, Youyi
    Myung, Nosang V.
    Nam, Jin
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [33] A concise index from electrical impedance spectroscopy measurements to characterize muscular tissue
    Clemente, Fabrizio
    Romano, Maria
    D'Angelo, Giovanni
    Bifulco, Paolo
    Cesarelli, Mario
    2013 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2013,
  • [34] Algorithm for tissue ischemia estimation based on electrical impedance spectroscopy
    Kun, S
    Ristic, B
    Peura, RA
    Dunn, RM
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (12) : 1352 - 1359
  • [35] Finite element modeling of the electrical impedance tomography technique driven by machine learning
    Elkhodbia, Mohamed
    Barsoum, Imad
    Korkees, Feras
    Bojanampati, Shrinivas
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 223
  • [36] Using machine learning algorithms to enhance the diagnostic performance of electrical impedance myography
    Pandeya, Sarbesh R.
    Nagy, Janice A.
    Riveros, Daniela
    Semple, Carson
    Taylor, Rebecca S.
    Hu, Alice
    Sanchez, Benjamin
    Rutkove, Seward B.
    MUSCLE & NERVE, 2022, 66 (03) : 354 - 361
  • [37] Machine learning enhanced electrical impedance tomography for 2D materials
    Coxson, Adam
    Mihov, Ivo
    Wang, Ziwei
    Avramov, Vasil
    Barnes, Frederik Brooke
    Slizovskiy, Sergey
    Mullan, Ciaran
    Timokhin, Ivan
    Sanderson, David
    Kretinin, Andrey
    Yang, Qian
    Lionheart, William R. B.
    Mishchenko, Artem
    INVERSE PROBLEMS, 2022, 38 (08)
  • [38] Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning
    Zhu, Shan
    Sun, Xinyang
    Gao, Xiaoyang
    Wang, Jianrong
    Zhao, Naiqin
    Sha, Junwei
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 855
  • [39] A Rapid Classification of Cross-Contaminations in Aviation Oil Using Impedance-Driven Supervised Machine Learning
    De Pascali, Chiara
    Bellisario, Daniele
    Signore, Maria Assunta
    Sciurti, Elisa
    Radogna, Antonio Vincenzo
    Francioso, Luca Nunzio
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 38209 - 38221
  • [40] Electrical impedance Spectroscopy of prostatic tissues
    Halter, R. J.
    Schned, A.
    Heaney, J.
    Hartov, A.
    Paulsen, K. D.
    13TH INTERNATIONAL CONFERENCE ON ELECTRICAL BIOIMPEDANCE AND THE 8TH CONFERENCE ON ELECTRICAL IMPEDANCE TOMOGRAPHY 2007, 2007, 17 : 126 - +