Adipose Tissue Characterization With Electrical Impedance Spectroscopy and Machine Learning

被引:0
|
作者
Dapsance, Florian [1 ,2 ,3 ]
Hou, Jie [1 ,4 ]
Dufour, Damien [2 ,3 ]
Boccara, Charlotte [2 ,3 ]
Briand, Nolwenn [2 ]
Martinsen, Orjan Grottem [1 ,4 ]
机构
[1] Univ Oslo, Dept Phys, Oslo, Norway
[2] Univ Oslo, Inst Basic Med Sci, Dept Mol Med, NO-0316 Oslo, Norway
[3] Univ Oslo, Ctr Mol Med Norway, NO-0316 Oslo, Norway
[4] Oslo Univ Hosp, Dept Clin & Biomed Engn, N-0424 Oslo, Norway
关键词
Impedance; Mice; Bioimpedance; Frequency measurement; Machine learning; Impedance measurement; Spectroscopy; Sensor applications; adipose tissue; bioimpedance; electrical impedance spectroscopy (EIS); machine learning;
D O I
10.1109/LSENS.2023.3317921
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biological tissues have variable passive electrical properties depending on their cellular constitution. Electrical impedance spectroscopy (EIS) is commonly used to monitor cell and tissue characteristics. By measuring the impedance of a sample at various frequencies, it is possible to collect information regarding cell size and shape, cell membrane properties, or cytoplasm conductivity. From the perspective of longitudinal structural monitoring, bioimpedance measurements outrank traditional tissue analysis methods, such as fixation and slicing, owing to their nondestructive nature. Machine learning can be used to automatically process the impedance data and make real-time classifications of tissue types. Here, we present preliminary results on ex-vivo mouse adipose tissue measurements using EIS and further data processing and classification using machine learning models.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Machine Learning-Assisted Equivalent Circuit Characterization for Electrical Impedance Spectroscopy Measurements of Bone Fractures
    Hua, Qirui
    Li, Yunfeng
    Frost, Markus W.
    Kold, Soren
    Rahbek, Ole
    Shen, Ming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 15
  • [2] Impedance-Readout Integrated Circuits for Electrical Impedance Spectroscopy: Methodological Review
    Cheon, Song-, I
    Choi, Haidam
    Kang, Hyoju
    Suh, Ji-Hoon
    Park, Seonghyun
    Kweon, Soon-Jae
    Je, Minkyu
    Ha, Sohmyung
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2024, 18 (01) : 215 - 232
  • [3] Effect of Calibration for Tissue Differentiation Between Healthy and Neoplasm Lung Using Minimally Invasive Electrical Impedance Spectroscopy
    Company-Se, Georgina
    Nescolarde, Lexa
    Pajares, Virginia
    Torrego, Alfons
    Riu, Pere J.
    Rosell, Javier
    Bragos, Ramon
    IEEE ACCESS, 2022, 10 : 103150 - 103163
  • [4] Ensemble-Based Machine Learning Algorithms for Classifying Breast Tissue Based on Electrical Impedance Spectroscopy
    Rahman, Sam Matiur
    Ali, Md Asraf
    Altwijri, Omar
    Alqahtani, Mahdi
    Ahmed, Nasim
    Ahamed, Nizam U.
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING, 2020, 965 : 260 - 266
  • [5] Classification of Wood Chips Using Electrical Impedance Spectroscopy and Machine Learning
    Tiitta, Markku
    Tiitta, Valtteri
    Heikkinen, Jorma
    Lappalainen, Reijo
    Tomppo, Laura
    SENSORS, 2020, 20 (04)
  • [6] Electrical Impedance Spectroscopy Based Preterm Birth Prediction with Machine Learning
    Wang, Mengxiao
    Lang, Zi-Qiang
    Zhang, Di
    Anumba, D. O. C.
    ARTIFICIAL INTELLIGENCE IN HEALTHCARE, PT I, AIIH 2024, 2024, 14975 : 85 - 97
  • [7] Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach
    Laufer, Shlomi
    Solomon, Stephen B.
    Rubinsky, Boris
    PHYSIOLOGICAL MEASUREMENT, 2012, 33 (06) : 997 - 1013
  • [8] Hybrid machine learning in electrical impedance tomography
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Guzik, Miroslaw
    Niderla, Konrad
    Lipski, Jerzy
    PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (12): : 169 - 172
  • [9] Early and Late Fusion Machine Learning on Multi-Frequency Electrical Impedance Data to Improve Radiofrequency Ablation Monitoring
    Besler, Emre
    Wang, Yearnchee Curtis
    Sahakian, Alan V.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (08) : 2359 - 2367
  • [10] Fish Detection Using Electrical Impedance Spectroscopy
    Nowak, Lukasz J.
    Lankheet, Martin
    IEEE SENSORS JOURNAL, 2022, 22 (21) : 20855 - 20865