Remaining Useful Life Prediction Via Interactive Attention-Based Deep Spatio-Temporal Network Fusing Multisource Information
被引:4
|
作者:
Lu, Shixiang
论文数: 0引用数: 0
h-index: 0
机构:
Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, EnglandNorthumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, England
Lu, Shixiang
[1
]
Gao, Zhiwei
论文数: 0引用数: 0
h-index: 0
机构:
Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, EnglandNorthumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, England
Gao, Zhiwei
[1
]
Xu, Qifa
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R ChinaNorthumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, England
Xu, Qifa
[2
]
Jiang, Cuixia
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R ChinaNorthumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, England
Jiang, Cuixia
[2
]
Xie, Tianming
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R ChinaNorthumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, England
Xie, Tianming
[2
]
Zhang, Aihua
论文数: 0引用数: 0
h-index: 0
机构:
Bohai Univ, Coll Engn, Jinzhou 121000, Peoples R ChinaNorthumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, England
Zhang, Aihua
[3
]
机构:
[1] Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, England
[2] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[3] Bohai Univ, Coll Engn, Jinzhou 121000, Peoples R China
Deep spatio-temporal network (DSTN);
information fusion;
interactive attention mechanism;
remaining useful life (RUL);
MODEL;
D O I:
10.1109/TIE.2023.3301551
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Emerging multisource data provide a promising way to make breakthroughs in remaining useful life prediction. Due to the diversity in industrial sites and the complexity of the engineering systems, a large amount of degradation information of machinery is hidden in multitype data, which poses a challenge to adequately capture the complex features that jointly affect remaining useful life. To this end, we propose an interactive attention-based deep spatio-temporal network to effectively fuse vibration waveforms and time-varying operating signals. Specifically, the spatio-temporal structure in the proposed model has the ability to mine long-term dependence and local spatial information from raw multisource data simultaneously. An interactive attention mechanism is used to weight the extracted feature contributions from different source dynamically. Furthermore, a modified mean absolute percentage error criterion is designed in the training process for the inherent properties of the remaining useful prediction. For illustration, a case study of a rotating machinery in an oil refinery and a public dataset of an aircraft engine are investigated. The extensive experiments have demonstrated that, compared to relying solely on either vibrational or operating signals and different fusion strategies, the proposed model can effectively integrate multisource data to reduce prediction loss with an acceptable performance.
机构:
Peking Univ, Inst Comp Sci & Technol, Beijing 100080, Peoples R ChinaPeking Univ, Inst Comp Sci & Technol, Beijing 100080, Peoples R China
Song, Sijie
Lan, Cuiling
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res Asia, Beijing 100080, Peoples R ChinaPeking Univ, Inst Comp Sci & Technol, Beijing 100080, Peoples R China
Lan, Cuiling
Xing, Junliang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R ChinaPeking Univ, Inst Comp Sci & Technol, Beijing 100080, Peoples R China
Xing, Junliang
Zeng, Wenjun
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res Asia, Beijing 100080, Peoples R China
Microsoft Res Asia, Senior Leadership Team, Beijing 100080, Peoples R ChinaPeking Univ, Inst Comp Sci & Technol, Beijing 100080, Peoples R China
Zeng, Wenjun
Liu, Jiaying
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Inst Comp Sci & Technol, Beijing 100080, Peoples R ChinaPeking Univ, Inst Comp Sci & Technol, Beijing 100080, Peoples R China
机构:
China Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China
China Jiliang Univ, Zhejiang Prov Key Lab Intelligent Mfg Qual Big Dat, Hangzhou 310051, Peoples R ChinaChina Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China
Wang, Wei
Li, Linchao
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Pecker AI Technol Ltd, Hangzhou 310018, Peoples R ChinaChina Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China
Li, Linchao
Wang, Xuwei
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R ChinaChina Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China
Wang, Xuwei
Li, Qing
论文数: 0引用数: 0
h-index: 0
机构:
China Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China
China Jiliang Univ, Zhejiang Prov Key Lab Intelligent Mfg Qual Big Dat, Hangzhou 310051, Peoples R ChinaChina Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China
Li, Qing
Jia, Shengyao
论文数: 0引用数: 0
h-index: 0
机构:
China Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China
China Jiliang Univ, Zhejiang Prov Key Lab Intelligent Mfg Qual Big Dat, Hangzhou 310051, Peoples R ChinaChina Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China
Jia, Shengyao
Tong, Renyuan
论文数: 0引用数: 0
h-index: 0
机构:
China Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China
China Jiliang Univ, Zhejiang Prov Key Lab Intelligent Mfg Qual Big Dat, Hangzhou 310051, Peoples R ChinaChina Jiliang Univ, Natl & Local Joint Engn Res Ctr Disaster Monitorin, Hangzhou 310051, Peoples R China