Remaining Useful Life Prediction Via Interactive Attention-Based Deep Spatio-Temporal Network Fusing Multisource Information

被引:4
|
作者
Lu, Shixiang [1 ]
Gao, Zhiwei [1 ]
Xu, Qifa [2 ]
Jiang, Cuixia [2 ]
Xie, Tianming [2 ]
Zhang, Aihua [3 ]
机构
[1] Northumbria Univ, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, England
[2] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[3] Bohai Univ, Coll Engn, Jinzhou 121000, Peoples R China
关键词
Deep spatio-temporal network (DSTN); information fusion; interactive attention mechanism; remaining useful life (RUL); MODEL;
D O I
10.1109/TIE.2023.3301551
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emerging multisource data provide a promising way to make breakthroughs in remaining useful life prediction. Due to the diversity in industrial sites and the complexity of the engineering systems, a large amount of degradation information of machinery is hidden in multitype data, which poses a challenge to adequately capture the complex features that jointly affect remaining useful life. To this end, we propose an interactive attention-based deep spatio-temporal network to effectively fuse vibration waveforms and time-varying operating signals. Specifically, the spatio-temporal structure in the proposed model has the ability to mine long-term dependence and local spatial information from raw multisource data simultaneously. An interactive attention mechanism is used to weight the extracted feature contributions from different source dynamically. Furthermore, a modified mean absolute percentage error criterion is designed in the training process for the inherent properties of the remaining useful prediction. For illustration, a case study of a rotating machinery in an oil refinery and a public dataset of an aircraft engine are investigated. The extensive experiments have demonstrated that, compared to relying solely on either vibrational or operating signals and different fusion strategies, the proposed model can effectively integrate multisource data to reduce prediction loss with an acceptable performance.
引用
收藏
页码:8007 / 8016
页数:10
相关论文
共 50 条
  • [31] RTS-GAT: Spatial Graph Attention-Based Spatio-Temporal Flow Prediction for Big Data Retailing
    Luo, Siyang
    IEEE ACCESS, 2022, 10 : 133232 - 133243
  • [32] Bearing Remaining Useful Life Prediction Based on Relation Network
    Zhao Z.-H.
    Zhang R.
    Sun S.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1549 - 1557
  • [33] Global attention mechanism based deep learning for remaining useful life prediction of aero-engine
    Xu, Zhiqiang
    Zhang, Yujie
    Miao, Jianguo
    Miao, Qiang
    MEASUREMENT, 2023, 217
  • [34] Multi-head attention-based variational autoencoders ensemble for remaining useful life prediction of aero-engines
    Wang, Yuxiao
    Suo, Chao
    Zhao, Yuyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [35] Spatio-temporal data generation based on separated attention for ENSO prediction
    Lin, Lianlei
    Wang, Junkai
    Tan, Aidi
    Chen, Jiawei
    APPLIED INTELLIGENCE, 2024, 54 (21) : 10473 - 10489
  • [36] Remaining Useful Life Prediction of Lithium-Ion Batteries: A Temporal and Differential Guided Dual Attention Neural Network
    Wang, Tianyu
    Ma, Zhongjing
    Zou, Suli
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (01) : 757 - 771
  • [37] A hybrid deep learning air pollution prediction approach based on neighborhood selection and spatio-temporal attention
    Chen, Gang
    Chen, Shen
    Li, Dong
    Chen, Cai
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] Just Another Attention Network for Remaining Useful Life Prediction of Rolling Element Bearings
    Huang, Gangjin
    Hua, Shungang
    Zhou, Qiang
    Li, Hongkun
    Zhang, Yuanliang
    IEEE ACCESS, 2020, 8 : 204144 - 204152
  • [39] Remaining Useful Life Prediction Based on Improved Temporal Convolutional Network for Nuclear Power Plant Valves
    Wang, Hang
    Peng, Minjun
    Xu, Renyi
    Ayodeji, Abiodun
    Xia, Hong
    FRONTIERS IN ENERGY RESEARCH, 2020, 8 (08):
  • [40] Air turbine starter remaining useful life prediction for bearing based on an improved temporal convolutional network
    Guo, Runxia
    Yang, Yini
    Huang, Chao
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024,