Assessment of numerical modeling approaches for thin composite laminates under low-velocity impact

被引:17
|
作者
Huang, Linhai [1 ]
Tao, Yin [1 ]
Sun, Jin [1 ]
Zhang, Diantang [2 ]
Zhao, Junhua [1 ]
机构
[1] Jiangnan Univ, Jiangsu Key Lab Adv Food Mfg Equipment & Technol, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Key Lab Ecotext, Minist Educ, Wuxi 214122, Peoples R China
关键词
Composite laminates; Failure criteria; Damage evolution methods; Finite element analysis (FEA); FAILURE CRITERIA; PROGRESSIVE FAILURE; DAMAGE; DELAMINATION; PART;
D O I
10.1016/j.tws.2023.111053
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Low-velocity impact behaviors of carbon/epoxy composite laminates have been widely investigated in recent years by using various numerical modeling approaches in which the specific damage initiation criterion, damage evolution method and interface model were employed. However, the computation accuracies of these approaches have rarely been compared and reported. To explore a high-precision modeling approach for low-velocity impact behaviors of laminated composites, numerical study focusing on a comparison of different failure criteria (Hashin/Puck), evolution methods (sudden/linear/exponential) and interface models (zero-thickness cohesive elements/finite-thickness cohesive elements/cohesive contact) was conducted. The dynamic mechanical responses and damage behaviors predicted by different modeling approaches were compared. A new damage index DI was proposed to characterize the extent of damage accumulation in each layer of laminates. The results indicate that the impact responses of the material are more influenced by the evolution methods rather than the failure criteria. The numerical results predicted with Puck criterion, linear evolution method, and finite-thickness cohesive elements are in the best agreement with the experimental data.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Finite Element and Experimental Study of the Fiber-Reinforced Composite Laminates under Low-Velocity Impact
    Liu Hanyang
    Qiu Xinming
    Zhang Dengyu
    He Yuhuai
    Fan Jinjuan
    ADVANCES IN ENGINEERING PLASTICITY XI, 2013, 535-536 : 505 - +
  • [42] Delamination propagation manipulation of composite laminates under low-velocity impact and residual compressive strength evaluation
    Zhang, Cong
    He, Erming
    Zhu, Keyu
    Li, Yongzhi
    Yan, Leilei
    Zheng, Xitao
    ENGINEERING FRACTURE MECHANICS, 2024, 307
  • [43] Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches
    Yao, Lu
    Wang, Changzi
    He, Wentao
    Lu, Shaojia
    Xie, De
    THIN-WALLED STRUCTURES, 2019, 145
  • [44] An Experimental Study on the Leakage Performances of Composite Laminates Subjected to Low-velocity Impact
    He, Wei
    Guan, Zhidong
    Ji, Zhaojie
    Zhou, Rui
    Wang, Qian
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND ENVIRONMENTAL ENGINEERING (MSEE 2013), 2013, : 409 - 413
  • [45] Predicting damage behaviors of composite laminates under multiple low-velocity impacts
    Lyu, Qihui
    Wang, Ben
    Zhao, Zhenqiang
    Bai, Risheng
    Guo, Zaoyang
    Wang, Biao
    POLYMER COMPOSITES, 2024, 45 (05) : 4760 - 4775
  • [46] A modified progressive damage model for simulating low-velocity impact of composite laminates
    Shao, Jiaru R.
    Liu, Niu
    Zheng, Zijun J.
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (05)
  • [47] Finite element modelling of damage induced by low-velocity impact on composite laminates
    Feng, D.
    Aymerich, F.
    COMPOSITE STRUCTURES, 2014, 108 : 161 - 171
  • [48] Damage prediction of thick composite laminates subjected to low-velocity impact loads
    Choi, Dong-Kuk
    Byun, Seon-Woo
    Lee, Gyeong-Han
    Lee, Soo-Yong
    Roh, Jin-Ho
    Lee, Cheol-Joo
    ADVANCED COMPOSITE MATERIALS, 2022, 31 (06) : 669 - 682
  • [49] Numerical simulation of low-velocity impact damage behaviour of composite laminates based on SMA superelasticity
    Zhang L.
    Hu D.
    Jia A.
    Wang R.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2017, 34 (02): : 364 - 373
  • [50] Experimental and numerical analysis of drop-weight low-velocity impact tests on hybrid titanium composite laminates
    Reiner, Johannes
    Pablo Torres, Juan
    Veidt, Martin
    Heitzmann, Michael
    JOURNAL OF COMPOSITE MATERIALS, 2016, 50 (26) : 3605 - 3617