Assessment of numerical modeling approaches for thin composite laminates under low-velocity impact

被引:16
|
作者
Huang, Linhai [1 ]
Tao, Yin [1 ]
Sun, Jin [1 ]
Zhang, Diantang [2 ]
Zhao, Junhua [1 ]
机构
[1] Jiangnan Univ, Jiangsu Key Lab Adv Food Mfg Equipment & Technol, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Key Lab Ecotext, Minist Educ, Wuxi 214122, Peoples R China
关键词
Composite laminates; Failure criteria; Damage evolution methods; Finite element analysis (FEA); FAILURE CRITERIA; PROGRESSIVE FAILURE; DAMAGE; DELAMINATION; PART;
D O I
10.1016/j.tws.2023.111053
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Low-velocity impact behaviors of carbon/epoxy composite laminates have been widely investigated in recent years by using various numerical modeling approaches in which the specific damage initiation criterion, damage evolution method and interface model were employed. However, the computation accuracies of these approaches have rarely been compared and reported. To explore a high-precision modeling approach for low-velocity impact behaviors of laminated composites, numerical study focusing on a comparison of different failure criteria (Hashin/Puck), evolution methods (sudden/linear/exponential) and interface models (zero-thickness cohesive elements/finite-thickness cohesive elements/cohesive contact) was conducted. The dynamic mechanical responses and damage behaviors predicted by different modeling approaches were compared. A new damage index DI was proposed to characterize the extent of damage accumulation in each layer of laminates. The results indicate that the impact responses of the material are more influenced by the evolution methods rather than the failure criteria. The numerical results predicted with Puck criterion, linear evolution method, and finite-thickness cohesive elements are in the best agreement with the experimental data.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Damage degradation modelling for transverse cracking in composite laminates under low-velocity impact
    Ibrahim, Ghalib R.
    Albarbar, A.
    Brethee, Khaldoon F.
    ENGINEERING FRACTURE MECHANICS, 2022, 263
  • [32] Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions
    Tuo, Hongliang
    Lu, Zhixian
    Ma, Xiaoping
    Xing, Jun
    Zhang, Chao
    COMPOSITES PART B-ENGINEERING, 2019, 163 : 642 - 654
  • [33] Numerical investigation of composite laminates subject to low-velocity edge-on impact and compression after impact
    Thorsson, Solver I.
    Waas, Anthony M.
    Rassaian, Mostafa
    COMPOSITE STRUCTURES, 2018, 203 : 648 - 658
  • [34] Numerical simulation of low-velocity impact damage behaviour of composite laminates based on SMA superelasticity
    Zhang L.
    Hu D.
    Jia A.
    Wang R.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2017, 34 (02): : 364 - 373
  • [35] Numerical Simulating and Experimental Study on the Woven Carbon Fiber-Reinforced Composite Laminates under Low-Velocity Impact
    Liu, Hanyang
    Tang, Zhanwen
    Pan, Lingying
    Zhao, Weidong
    Sun, Baogang
    Jiang, Wenge
    VIII INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS AND COMPOSITES: FROM AEROSPACE TO NANOTECHNOLOGY, 2016, 1736
  • [36] Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact
    Zhang, Chenxu
    Huang, Jia
    Li, Xi
    Zhang, Chao
    FIBERS AND POLYMERS, 2020, 21 (12) : 2873 - 2887
  • [37] Numerical Study of the Damage Behavior of Carbon Fiber/Glass Fiber Hybrid Composite Laminates under Low-velocity Impact
    Chenxu Zhang
    Jia Huang
    Xi Li
    Chao Zhang
    Fibers and Polymers, 2020, 21 : 2873 - 2887
  • [38] Numerical simulation of low-velocity impact test on PALF/Epoxy bio-composite laminates
    Pavan, Raut
    Prashant, Anerao
    Ameen, Topa
    Yashwant, Munde
    Shinde, Avinash
    Siva, Irulappasamy
    MATERIALS PHYSICS AND MECHANICS, 2022, 50 (01): : 126 - 140
  • [39] Numerical approach to damages in a composite laminated plate under a low-velocity impact
    Chen, Li-Hua
    Zhang, Wei
    Li, Hao-Qun
    Yang, Jie
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2007, 8 (04) : 581 - 587
  • [40] Numerical model of curved composite tiles under low-velocity impact loading
    Akbarieh, Shiva Rezaei
    Ma, Dayou
    Sbarufatti, Claudio
    Manes, Andrea
    JOURNAL OF COMPOSITE MATERIALS, 2025, 59 (05) : 661 - 680