Assessment of numerical modeling approaches for thin composite laminates under low-velocity impact

被引:16
|
作者
Huang, Linhai [1 ]
Tao, Yin [1 ]
Sun, Jin [1 ]
Zhang, Diantang [2 ]
Zhao, Junhua [1 ]
机构
[1] Jiangnan Univ, Jiangsu Key Lab Adv Food Mfg Equipment & Technol, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Key Lab Ecotext, Minist Educ, Wuxi 214122, Peoples R China
关键词
Composite laminates; Failure criteria; Damage evolution methods; Finite element analysis (FEA); FAILURE CRITERIA; PROGRESSIVE FAILURE; DAMAGE; DELAMINATION; PART;
D O I
10.1016/j.tws.2023.111053
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Low-velocity impact behaviors of carbon/epoxy composite laminates have been widely investigated in recent years by using various numerical modeling approaches in which the specific damage initiation criterion, damage evolution method and interface model were employed. However, the computation accuracies of these approaches have rarely been compared and reported. To explore a high-precision modeling approach for low-velocity impact behaviors of laminated composites, numerical study focusing on a comparison of different failure criteria (Hashin/Puck), evolution methods (sudden/linear/exponential) and interface models (zero-thickness cohesive elements/finite-thickness cohesive elements/cohesive contact) was conducted. The dynamic mechanical responses and damage behaviors predicted by different modeling approaches were compared. A new damage index DI was proposed to characterize the extent of damage accumulation in each layer of laminates. The results indicate that the impact responses of the material are more influenced by the evolution methods rather than the failure criteria. The numerical results predicted with Puck criterion, linear evolution method, and finite-thickness cohesive elements are in the best agreement with the experimental data.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Numerical analysis of influence factors on low-velocity impact damage of stitched composite laminates
    Mao, Chunjian
    Zhang, Chao
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2020, 27 (12) : 1019 - 1028
  • [22] Numerical investigation on auxetic angle-ply CFRP composite laminates under low-velocity impact loading
    Saremian, Reza
    Jamal-Omidi, Majid
    Pirkandi, Jamasb
    ARCHIVE OF APPLIED MECHANICS, 2024, 94 (12) : 3625 - 3646
  • [23] Direct Numerical Simulation of Composite laminates Under low velocity Impact
    Ji, Kuk Hyun
    Kim, Seung Jo
    COMPOSITES RESEARCH, 2006, 19 (01):
  • [24] Experimental and numerical analysis of low-velocity impact of plastic laminates
    Ramakrishnan, K. R.
    Shankar, K.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2013, 36 (11) : 1153 - 1163
  • [25] Low-velocity impact behaviour of composite laminates-a review
    Austin, Alen
    Priyadarsini, R. S.
    EMERGING TRENDS IN ENGINEERING, SCIENCE AND TECHNOLOGY FOR SOCIETY, ENERGY AND ENVIRONMENT, 2018, : 59 - 65
  • [26] PREDICTION OF DELAMINATION IN COMPOSITE LAMINATES SUBJECTED TO LOW-VELOCITY IMPACT
    JIH, CJ
    SUN, CT
    JOURNAL OF COMPOSITE MATERIALS, 1993, 27 (07) : 684 - 701
  • [27] PREDICTION OF LOW-VELOCITY IMPACT DAMAGE IN THIN CIRCULAR LAMINATES
    SHIVAKUMAR, KN
    ELBER, W
    ILLG, W
    AIAA JOURNAL, 1985, 23 (03) : 442 - 449
  • [28] Low-velocity impact analysis of composite laminates under initial in-plane load
    Choi, Ik-Hyeon
    COMPOSITE STRUCTURES, 2008, 86 (1-3) : 251 - 257
  • [29] Experimental characterization of composite laminates under low-velocity multi-impact loading
    Amouzou, Adade Seyth Ezeckiel
    Sicot, Olivier
    Chettah, Ameur
    Aivazzadeh, Shahram
    JOURNAL OF COMPOSITE MATERIALS, 2019, 53 (17) : 2391 - 2405
  • [30] Material parameter optimization of flax/epoxy composite laminates under low-velocity impact
    Giammaria, Valentina
    Del Bianco, Giulia
    Raponi, Elena
    Fiumarella, Dario
    Ciardiello, Raffaele
    Boria, Simonetta
    Duddeck, Fabian
    Belingardi, Giovanni
    COMPOSITE STRUCTURES, 2023, 321