Monoidal Width: Capturing Rank Width

被引:0
|
作者
Di Lavore, Elena [1 ]
Sobocinski, Pawel [1 ]
机构
[1] Tallinn Univ Technol, Tallinn, Estonia
来源
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE | 2023年 / 380期
关键词
GRAPH MINORS; CLIQUE-WIDTH;
D O I
10.4204/EPTCS.380.16
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Monoidal width was recently introduced by the authors as a measure of the complexity of decomposing morphisms in monoidal categories. We have shown that in a monoidal category of cospans of graphs, monoidal width and its variants can be used to capture tree width, path width and branch width. In this paper we study monoidal width in a category of matrices, and in an extension to a different monoidal category of open graphs, where the connectivity information is handled with matrix algebra and graphs are composed along edges instead of vertices. We show that here monoidal width captures rank width: a measure of graph complexity that has received much attention in recent years.
引用
收藏
页码:268 / 283
页数:16
相关论文
共 50 条
  • [1] MONOIDAL WIDTH
    Di Lavore, Elena
    Sobocinski, Pawel
    LOGICAL METHODS IN COMPUTER SCIENCE, 2023, 19 (03) : 1 - 15
  • [2] Approximating Rank-Width and Clique-Width Quickly
    Oum, Sang-Il
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 5 (01)
  • [3] Rank-width: Algorithmic and structural results
    Oum, Sang-il
    DISCRETE APPLIED MATHEMATICS, 2017, 231 : 15 - 24
  • [4] Rank-width is less than or equal to branch-width
    Oum, Sang-il
    JOURNAL OF GRAPH THEORY, 2008, 57 (03) : 239 - 244
  • [5] On low rank-width colorings
    Kwon, O-joung
    Pilipczuk, Michal
    Siebertz, Sebastian
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 83
  • [6] On Low Rank-Width Colorings
    Kwon, O-joung
    Pilipczuk, Michal
    Siebertz, Sebastian
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 372 - 385
  • [7] Rank-width of random graphs
    Lee, Choongbum
    Lee, Joonkyung
    Oum, Sang-il
    JOURNAL OF GRAPH THEORY, 2012, 70 (03) : 339 - 347
  • [8] Rank-width and tree-width of H-minor-free graphs
    Fomin, Fedor V.
    Oum, Sang-il
    Thilikos, Dimitrios M.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) : 1617 - 1628
  • [9] TREE PIVOT-MINORS AND LINEAR RANK-WIDTH
    Dabrowski, Konrad K.
    Dross, Francois
    Jeong, Jisu
    Kante, Mamadou M.
    Kwon, O-joung
    Oum, Sang-il
    Paulusma, Daniel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 2922 - 2945
  • [10] Canonisation and Definability for Graphs of Bounded Rank Width
    Grohe, Martin
    Neuen, Daniel
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2023, 24 (01)