FGF signaling regulates salivary gland branching morphogenesis by modulating cell adhesion

被引:7
作者
Ray, Ayan T. [1 ,2 ]
Soriano, Philippe [1 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Cell Dev & Regenerat Biol, New York, NY 10029 USA
[2] Enzo Life Sci, Farmingdale, NY 11735 USA
来源
DEVELOPMENT | 2023年 / 150卷 / 06期
关键词
FGF; Cell signaling; Branching morphogenesis; Salivary gland; Basement membrane; FIBROBLAST-GROWTH-FACTOR; MEMBRANE-LIKE SUBSTRATUM; SUBMANDIBULAR-GLAND; BASEMENT-MEMBRANE; EPITHELIAL MORPHOGENESIS; N-CADHERIN; MOUSE; EXPRESSION; MESENCHYME; MATRIX;
D O I
10.1242/dev.201293
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Loss of FGF signaling leads to defects in salivary gland branching, but the mechanisms underlying this phenotype remain largely unknown. We disrupted expression of Fgfr1 and Fgfr2 in salivary gland epithelial cells and found that both receptors function coordinately in regulating branching. Strikingly, branching morphogenesis in double knockouts is restored by Fgfr1 and Fgfr2 (Fgfr1/2) knock-in alleles incapable of engaging canonical RTK signaling, suggesting that additional FGF-dependent mechanisms play a role in salivary gland branching. Fgfr1/2 conditional null mutants showed defective cell-cell and cell-matrix adhesion, both of which have been shown to play instructive roles in salivary gland branching. Loss of FGF signaling led to disordered cell-basement membrane interactions in vivo as well as in organ culture. This was partially restored upon introducing Fgfr1/2 wild-type or signaling alleles that are incapable of eliciting canonical intracellular signaling. Together, our results identify non-canonical FGF signaling mechanisms that regulate branching morphogenesis through cell -adhesion processes.
引用
收藏
页数:12
相关论文
共 75 条
[51]   Single-cell RNA sequencing reveals PDFGRα+ stromal cell subpopulations that promote proacinar cell differentiation in embryonic salivary gland organoids [J].
Moskwa, Nicholas ;
Mahmood, Ayma ;
Nelson, Deirdre A. ;
Altrieth, Amber L. ;
Forni, Paolo E. ;
Larsen, Melinda .
DEVELOPMENT, 2022, 149 (06)
[52]   A global double-fluorescent cre reporter mouse [J].
Muzumdar, Mandar Deepak ;
Tasic, Bosiljka ;
Miyamichi, Kazunari ;
Li, Ling ;
Luo, Liqun .
GENESIS, 2007, 45 (09) :593-605
[53]   FGF signalling in craniofacial development and developmental disorders [J].
Nie, XG ;
Luukko, K ;
Kettunen, P .
ORAL DISEASES, 2006, 12 (02) :102-111
[54]  
NOGAWA H, 1991, DEVELOPMENT, V112, P855
[55]   FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development [J].
Ohuchi, H ;
Hori, Y ;
Yamasaki, M ;
Harada, H ;
Sekine, K ;
Kato, S ;
Itoh, N .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 277 (03) :643-649
[56]   New developments in the biology of fibroblast growth factors [J].
Ornitz, David M. ;
Itoh, Nobuyuki .
WIRES MECHANISMS OF DISEASE, 2022, 14 (04)
[57]   Salivary gland branching morphogenesis [J].
Patel, Vaishali N. ;
Rebustini, Ivan T. ;
Hoffman, Matthew P. .
DIFFERENTIATION, 2006, 74 (07) :349-364
[58]   REQUIREMENT OF HEPARAN-SULFATE FOR BFGF-MEDIATED FIBROBLAST GROWTH AND MYOBLAST DIFFERENTIATION [J].
RAPRAEGER, AC ;
KRUFKA, A ;
OLWIN, BB .
SCIENCE, 1991, 252 (5013) :1705-1708
[59]   The flow responsive transcription factor Klf2 is required for myocardial wall integrity by modulating Fgf signaling [J].
Rasouli, Seyed Javad ;
El-Brolosy, Mohamed ;
Tsedeke, Ayele Taddese ;
Bensimon-Brito, Anabela ;
Ghanbari, Parisa ;
Maischein, Hans-Martin ;
Kuenne, Carsten ;
Stainier, Didier Y. .
ELIFE, 2018, 7
[60]   FGF signaling regulates development by processes beyond canonical pathways [J].
Ray, Ayan T. ;
Mazot, Pierre ;
Brewer, J. Richard ;
Catela, Catarina ;
Dinsmore, Colin J. ;
Soriano, Philippe .
GENES & DEVELOPMENT, 2020, 34 (23-24) :1735-1752