Hyperspectral image denoising via spectral noise distribution bootstrap

被引:8
作者
Pan, Erting [1 ]
Ma, Yong [1 ]
Mei, Xiaoguang [1 ]
Fan, Fan [1 ]
Ma, Jiayi [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image denoising; Image restoration; Spectral distribution; Noise estimation; Noise distribution; RESTORATION;
D O I
10.1016/j.patcog.2023.109699
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image (HSI) denoising is an ill-posed problem, leading to integrating proper prior knowledge about hyperspectral noise is critical to developing an efficient denoising method. Most existing methods share a common assumption that all bands have equal noise intensity. However, such assumption runs counter to the practical HSIs, leading to unpleasant denoising results. To tackle this, we intend to investigate the intrinsic properties of real HSI noise in the spectral dimension and construct a novel denoising framework bootstrapping by spectral noise distribution (N) over cap , termed (N) over cap -Net. On the one hand, we develop dense and sparse recurrent calculations, exploiting intrinsic properties of HSI noise (i.e. , diversity, dense dependency, and global sparsity) to estimate spectral noise distribution. On the other hand, having the estimated spectral noise distribution, we develop a bootstrap mechanism with a repetitive emphasis on its guidance for subsequent spatial noise separation and clean HSI recovery, ensuring a more delicate denoising effect. In particular, we verify that the proposed denoising framework can achieve promising denoising performances due to the merit of spectral noise distribution bootstrapping, which also promotes new insights for future related research. The code is avaliable at https://github.com/EtPan/N-Net . (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Hyperspectral Image Denoising via Noise-Adjusted Iterative Low-Rank Matrix Approximation
    He, Wei
    Zhang, Hongyan
    Zhang, Liangpei
    Shen, Huanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 3050 - 3061
  • [12] Noise estimation of hyperspectral image in the spatial and spectral dimensions
    Zhang S.
    Sun B.
    Li S.
    Kang X.
    National Remote Sensing Bulletin, 2021, 25 (05) : 1108 - 1123
  • [13] A hyperspectral image denoising method based on land cover spectral autocorrelation
    Zhao, Shuheng
    Zhu, Xiaolin
    Liu, Denghong
    Xu, Fei
    Wang, Yan
    Lin, Liupeng
    Chen, Xuehong
    Yuan, Qiangqiang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 123
  • [14] Hyperspectral Image Denoising Using Spatio-Spectral Total Variation
    Aggarwal, Hemant Kumar
    Majumdar, Angshul
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 442 - 446
  • [15] Nonlocal Spatial-Spectral Neural Network for Hyperspectral Image Denoising
    Fu, Guanyiman
    Xiong, Fengchao
    Lu, Jianfeng
    Zhou, Jun
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [16] Spectral-Spatial Adaptive Sparse Representation for Hyperspectral Image Denoising
    Lu, Ting
    Li, Shutao
    Fang, Leyuan
    Ma, Yi
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 373 - 385
  • [17] Hyperspectral Image Denoising via Double Subspace Deep Prior
    Shi, Kexin
    Peng, Jiangjun
    Gao, Jing
    Luo, Yisi
    Xu, Shuang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [18] Hyperspectral Image Denoising by Pixel-Wise Noise Modeling and TV-Oriented Deep Image Prior
    Yi, Lixuan
    Zhao, Qian
    Xu, Zongben
    REMOTE SENSING, 2024, 16 (15)
  • [19] Hyperspectral Image Denoising With a Spatial-Spectral View Fusion Strategy
    Yuan, Qiangqiang
    Zhang, Liangpei
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05): : 2314 - 2325
  • [20] Hyperspectral Image Denoising Based on Hyper-Laplacian Total Variation in Spectral Gradient Domain
    Yang, Fang
    Hu, Qiangfu
    Su, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63