Hyperspectral image denoising via spectral noise distribution bootstrap

被引:8
作者
Pan, Erting [1 ]
Ma, Yong [1 ]
Mei, Xiaoguang [1 ]
Fan, Fan [1 ]
Ma, Jiayi [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image denoising; Image restoration; Spectral distribution; Noise estimation; Noise distribution; RESTORATION;
D O I
10.1016/j.patcog.2023.109699
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image (HSI) denoising is an ill-posed problem, leading to integrating proper prior knowledge about hyperspectral noise is critical to developing an efficient denoising method. Most existing methods share a common assumption that all bands have equal noise intensity. However, such assumption runs counter to the practical HSIs, leading to unpleasant denoising results. To tackle this, we intend to investigate the intrinsic properties of real HSI noise in the spectral dimension and construct a novel denoising framework bootstrapping by spectral noise distribution (N) over cap , termed (N) over cap -Net. On the one hand, we develop dense and sparse recurrent calculations, exploiting intrinsic properties of HSI noise (i.e. , diversity, dense dependency, and global sparsity) to estimate spectral noise distribution. On the other hand, having the estimated spectral noise distribution, we develop a bootstrap mechanism with a repetitive emphasis on its guidance for subsequent spatial noise separation and clean HSI recovery, ensuring a more delicate denoising effect. In particular, we verify that the proposed denoising framework can achieve promising denoising performances due to the merit of spectral noise distribution bootstrapping, which also promotes new insights for future related research. The code is avaliable at https://github.com/EtPan/N-Net . (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Hyperspectral Image Denoising via Nonlocal Spectral Sparse Subspace Representation
    Wang, Hailin
    Peng, Jiangjun
    Cao, Xiangyong
    Wang, Jianjun
    Zhao, Qibin
    Meng, Deyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5189 - 5203
  • [2] Hyperspectral Image Denoising via Spatial-Spectral Recurrent Transformer
    Fu, Guanyiman
    Xiong, Fengchao
    Lu, Jianfeng
    Zhou, Jun
    Zhou, Jiantao
    Qian, Yuntao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [3] Hyperspectral Image Denoising by Asymmetric Noise Modeling
    Xu, Shuang
    Cao, Xiangyong
    Peng, Jiangjun
    Ke, Qiao
    Ma, Cong
    Meng, Deyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Hyperspectral Image Denoising via Group Sparsity Regularized Hybrid Spatio-Spectral Total Variation
    Zhang, Pengdan
    Ning, Jifeng
    REMOTE SENSING, 2022, 14 (10)
  • [5] Deep Spatial-Spectral Representation Learning for Hyperspectral Image Denoising
    Dong, Weisheng
    Wang, Huan
    Wu, Fangfang
    Shi, Guangming
    Li, Xin
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2019, 5 (04) : 635 - 648
  • [6] Hyperspectral Denoising Using Asymmetric Noise Modeling Deep Image Prior
    Wang, Yifan
    Xu, Shuang
    Cao, Xiangyong
    Ke, Qiao
    Ji, Teng-Yu
    Zhu, Xiangxiang
    REMOTE SENSING, 2023, 15 (08)
  • [7] Spatial-spectral weighted nuclear norm minimization for hyperspectral image denoising
    Huang, Xinjian
    Du, Bo
    Tao, Dapeng
    Zhang, Liangpei
    NEUROCOMPUTING, 2020, 399 : 271 - 284
  • [8] Hyperspectral Image Denoising via Matrix Factorization and Deep Prior Regularization
    Lin, Baihong
    Tao, Xiaoming
    Lu, Jianhua
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 565 - 578
  • [9] Unidirectional Spatial and Spectral Smoothed Tensor Ring Decomposition for Hyperspectral Image Denoising and Destriping
    Zhou, Yang
    Chen, Yong
    Zeng, Jinshan
    He, Wei
    Huang, Min
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [10] Unsupervised Hyperspectral Denoising Based on Deep Image Prior and Least Favorable Distribution
    Niresi, Keivan Faghih
    Chi, Chong-Yung
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5967 - 5983