Process Insights into Perovskite Thin-Film Photovoltaics from Machine Learning with In Situ Luminescence Data

被引:11
作者
Laufer, Felix [1 ]
Ziegler, Sebastian [2 ,3 ]
Schackmar, Fabian [1 ,4 ]
Viteri, Edwin A. Moreno [1 ]
Goetz, Markus [5 ]
Debus, Charlotte [5 ]
Isensee, Fabian [2 ,3 ]
Paetzold, Ulrich W. [1 ,4 ]
机构
[1] Karlsruhe Inst Technol KIT, Light Technol Inst LTI, Engesserstr 13, D-76131 Karlsruhe, Germany
[2] German Canc Res Ctr, Div Med Image Comp, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
[3] Helmholtz Imaging, Appl Comp Vis Lab, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
[4] Karlsruhe Inst Technol KIT, Inst Microstruct Technol IMT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[5] Karlsruhe Inst Technol KIT, Steinbuch Ctr Comp SCC, Helmholtz AI, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
clustering; datasets; in situ characterization; machine learning; performance prediction; perovskite solar cells; process monitoring; PERFORMANCE;
D O I
10.1002/solr.202201114
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Large-area processing remains a key challenge for perovskite solar cells (PSCs). Advanced understanding and improved reproducibility of scalable fabrication processes are required to unlock the technology's economic potential. In this regard, machine learning (ML) methods have emerged as a promising tool to accelerate research and unlock the control needed to produce large-area solution-processed perovskite thin films. However, a suitable dataset allowing the analysis of a scalable fabrication process is currently missing. Herein, a unique labeled in situ photoluminescence (PL) dataset for blade-coated PSCs is introduced and explored with unsupervised k-means clustering, demonstrating the feasibility to derive meaningful insights from such data. Correlations between the obtained clusters and the measured performance of PSC reveal that the in situ PL signal encodes information about the perovskite thin-film quality. Detrimental mechanisms during thin-film formation are detected by identifying spatial differences in PL patterns and, consequently, of device performance. In addition, k-nearest neighbors is applied to predict the performance of PSCs, motivating further investigations into ML-based in-line process monitoring of scalable PSC fabrication to detect, understand, and ultimately minimize process variations across iterations.
引用
收藏
页数:14
相关论文
共 73 条
[1]  
Abdullah-Vetter Z., 2021, C REC IEEE PHOT SPEC, P745
[2]   Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J].
Agrawal, Ankit ;
Choudhary, Alok .
APL MATERIALS, 2016, 4 (05)
[3]  
Ahan M. R., 2021, SenSys '21: Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, P485, DOI 10.1145/3485730.3493455
[4]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[5]   Optical Absorption-Based In Situ Characterization of Halide Perovskites [J].
Babbe, Finn ;
Sutter-Fella, Carolin M. .
ADVANCED ENERGY MATERIALS, 2020, 10 (26)
[6]   Anomaly detection in IR images of PV modules using supervised contrastive learning [J].
Bommes, Lukas ;
Hoffmann, Mathis ;
Buerhop-Lutz, Claudia ;
Pickel, Tobias ;
Hauch, Jens ;
Brabec, Christoph ;
Maier, Andreas ;
Peters, Ian Marius .
PROGRESS IN PHOTOVOLTAICS, 2022, 30 (06) :597-614
[7]   Computer vision tool for detection, mapping, and fault classification of photovoltaics modules in aerial IR videos [J].
Bommes, Lukas ;
Pickel, Tobias ;
Buerhop-Lutz, Claudia ;
Hauch, Jens ;
Brabec, Christoph ;
Peters, Ian Marius .
PROGRESS IN PHOTOVOLTAICS, 2021, 29 (12) :1236-1251
[8]   A Deep Learning Approach for Loss-Analysis from Luminescence Images [J].
Buratti, Yoann ;
Abdullah-Vetter, Zubair ;
Sowmya, Arcot ;
Trupke, Thorsten ;
Hameiri, Ziv .
2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, :97-100
[9]   Half and full solar cell efficiency binning by deep learning on electroluminescence images [J].
Buratti, Yoann ;
Sowmya, Arcot ;
Evans, Rhett ;
Trupke, Thorsten ;
Hameiri, Ziv .
PROGRESS IN PHOTOVOLTAICS, 2022, 30 (03) :276-287
[10]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555