Membrane-aerated biofilm reactor (MABR): recent advances and challenges

被引:7
|
作者
Siagian, Utjok W. R. [3 ]
Friatnasary, Dwi L. L. [1 ]
Khoiruddin, Khoiruddin [1 ]
Reynard, Reynard [1 ]
Qiu, Guanglei [4 ]
Ting, Yen-Peng [5 ]
Wenten, I. Gede [1 ,2 ]
机构
[1] Inst Teknol Bandung, Dept Chem Engn, Jl Ganesha 10, Bandung 40132, Indonesia
[2] Inst Teknol Bandung, Res Ctr Biosci & Biotechnol, Jl Ganesha 10, Bandung 40132, Indonesia
[3] Inst Teknol Bandung, Dept Petr Engn, Jl Ganesha 10, Bandung 40132, Indonesia
[4] South China Univ Technol, Sch Environm & Energy, B4-405, Guangzhou 510006, Peoples R China
[5] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117576, Singapore
关键词
activated sludge; aeration; biofilm; membrane; wastewater; water treatment; WASTE-WATER TREATMENT; HOLLOW-FIBER-MEMBRANE; CONVENTIONAL ACTIVATED-SLUDGE; OPTICAL COHERENCE TOMOGRAPHY; GAS-PERMEABLE MEMBRANES; LONG-TERM PERFORMANCE; OXYGEN-TRANSFER RATE; NITROGEN REMOVAL; MASS-TRANSFER; SIMULTANEOUS NITRIFICATION;
D O I
10.1515/revce-2021-0078
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Membrane-aerated biofilm reactor (MABR) has been considered as an innovative technology to solve aeration issues in conventional bioreactors. MABR uses a membrane to supply oxygen to biofilm grown on the membrane surface. MABR can perform bubbleless aeration with high oxygen transfer rates, which can reduce energy requirements and expenses. In addition, a unique feature of counter-diffusion creates a stratified biofilm structure, allowing the simultaneous nitrification-denitrification process to take place in a single MABR. Controlling the biofilm is crucial in MABR operation, since its thickness significantly affects MABR performance. Several approaches have been proposed to control biofilm growth, such as increasing shear stress, adding chemical agents (e.g., surfactant), using biological predators to suppress microorganism growth, and introducing ultrasound cavitation to detach biofilm. Several studies also showed the important role of membrane properties and configuration in biofilm development. In addition, MABR demonstrates high removal rates of pollutants in various wastewater treatments, including in full-scale plants. This review presents the basic principles of MABR and the effect of operational conditions on its performance. Biofilm formation, methods to control its thickness, and membrane materials are also discussed. In addition, MABR performance in various applications, full-scale MBRs, and challenges is summarized.
引用
收藏
页码:93 / 122
页数:30
相关论文
共 50 条
  • [21] The C/N Ratio's Effect on a Membrane-Aerated Biofilm Reactor (MABR): COD and Nitrogen Removal, Biofilm Characteristics, and Microbial Community Structure
    Zhong, Huiyun
    Dong, Liangfei
    Tang, Yuanyuan
    Qi, Lin
    Wang, Mengyu
    WATER, 2023, 15 (24)
  • [22] Influence of biofilm thickness on the removal of thirteen different organic micropollutants via a Membrane Aerated Biofilm Reactor (MABR)
    Sanchez-Huerta, C.
    Fortunato, L.
    Leiknes, T.
    Hong, P. -y.
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 432
  • [23] Engineering aspects of a mixed methanotrophic culture in a membrane-aerated biofilm reactor
    Casey, E
    Rishell, S
    Glennon, B
    Hamer, G
    WATER SCIENCE AND TECHNOLOGY, 2004, 49 (11-12) : 255 - 262
  • [24] Evaluating the performance of an integrated membrane-aerated biofilm reactor (MABR) system for high-strength brewery wastewater treatment
    Tian, Hailong
    Zhang, Jisheng
    Zheng, Yifei
    Zheng, Guipeng
    Li, Yuanyuan
    Yan, Yingchun
    Li, Zhiwen
    Hui, Ming
    ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2023, 9 (08) : 2053 - 2064
  • [25] Mixed pharmaceutical wastewater treatment by integrated membrane-aerated biofilm reactor (MABR) system - A pilot-scale study
    Wei, Xin
    Li, Baoan
    Zhao, Song
    Wang, Li
    Zhang, Hongyu
    Li, Chang
    Wang, Shichang
    BIORESOURCE TECHNOLOGY, 2012, 122 : 189 - 195
  • [26] Bioremediation of Oil Containing Seawater by Membrane-Aerated Biofilm Reactor
    Li, Peng
    Zhang, Yunge
    Li, Mei
    Li, Baoan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (51) : 13009 - 13016
  • [27] Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine
    Zheng, Peng
    Li, Yan
    Chi, Qiang
    Cheng, Youpeng
    Jiang, Xinbai
    Chen, Dan
    Mu, Yang
    Shen, Jinyou
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 437
  • [28] Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration
    Gilmore, Kevin R.
    Terada, Akihiko
    Smets, Barth F.
    Love, Nancy G.
    Garland, Jay L.
    ENVIRONMENTAL ENGINEERING SCIENCE, 2013, 30 (01) : 38 - 45
  • [29] Development of a membrane-aerated biofilm reactor to completely mineralise perchloroethylene in wastewaters
    Ohandja, D. Guy
    Stuckey, David C.
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2006, 81 (11) : 1736 - 1744
  • [30] Long-term operation assessment of a full-scale membrane-aerated biofilm reactor under Nordic conditions
    Uri-Carreno, Nerea
    Nielsen, Per H.
    Gernaey, Krist V.
    Flores-Alsina, Xavier
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 779