Evolving Elman neural networks based state-of-health estimation for satellite lithium-ion batteries

被引:19
|
作者
Zhang, Dengfeng [1 ]
Li, Weichen [2 ]
Han, Xiaodong [3 ]
Lu, Baochun [2 ]
Zhang, Quanling [1 ]
Bo, Cuimei [1 ]
机构
[1] Nanjing Tech Univ, Inst Intelligent Mfg, Xinmofan Rd, Nanjing, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mech Engn, Xiaolingwei Ave, Nanjing, Peoples R China
[3] China Acad Space Technol, Inst Telecommun & Nav Satellites, Youyi Rd, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
State; -of; -health; Evolving Elman neural network; Satellite lithium -ion batteries; Time series of equal discharging voltage; difference; In -orbit operation; PREDICTION; MANAGEMENT;
D O I
10.1016/j.est.2022.106571
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the rapid development of aerospace industry, accurate and timely state-of-health (SOH) estimation by in -orbit measurable parameters is critical for the safe and reliable operation of satellite lithium-ion batteries. In this paper, a novel SOH estimation strategy is proposed based on the k-means clustering analysis (KMCA) and the evolving Elman neural network (EENN) by using the in-orbit discharging voltage data. The time series of equal discharging voltage difference (TSEDVD) is firstly developed as the feature to describe the capacity degradation in each charge-and-discharge cycle. Then, the KMCA is used offline to rank the capacity fading of lithium-ion battery into different health levels by virtue of the TSEDVD feature derived from the historical dataset throughout the battery lifecycle. Furthermore, a set of EENN models are constructed offline corresponding to the health levels and employed in estimating the SOH value online, where the improved evolving algorithm combining the genetic and simulated annealing algorithms is proposed to optimize the initial weights and thresholds in order to get the accurate estimation results. For the in-orbit application, the SOH value can be easily estimated online only via the monitored voltage signal exciting the corresponding EENN. The experimental results using the datasets from the NASA Ames Prognostics Center and the real GEO communication satellite demonstrate the validity of the proposed approach. It is feasible for the in-orbit SOH estimation of satellite lithium-ion batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
    Ren, Zhong
    Du, Changqing
    ENERGY REPORTS, 2023, 9 : 2993 - 3021
  • [22] State of Charge Estimation for Lithium-Ion Batteries Based on TCN-LSTM Neural Networks
    Hu, Chunsheng
    Cheng, Fangjuan
    Ma, Liang
    Li, Bohao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
  • [23] State-of-health estimation for lithium-ion batteries based on Bi-LSTM-AM and LLE feature extraction
    Wang, Wentao
    Yang, Gaoyuan
    Li, Muxi
    Yan, Zuoyi
    Zhang, Lisheng
    Yu, Hanqing
    Yang, Kaiyi
    Jiang, Pengchang
    Hua, Wei
    Zhang, Yong
    Zou, Bosong
    Yang, Kai
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [24] State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm
    Gong, Yadong
    Zhang, Xiaoyong
    Gao, Dianzhu
    Li, Heng
    Yan, Lisen
    Peng, Jun
    Huang, Zhiwu
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [25] Lithium-ion battery degradation diagnosis and state-of-health estimation with half cell electrode potential
    Zhu, Chen
    Sun, Liqing
    Chen, Cheng
    Tian, Jinpeng
    Shen, Weixiang
    Xiong, Rui
    ELECTROCHIMICA ACTA, 2023, 459
  • [26] A method for state of energy estimation of lithium-ion batteries based on neural network model
    Dong, Guangzhong
    Zhang, Xu
    Zhang, Chenbin
    Chen, Zonghai
    ENERGY, 2015, 90 : 879 - 888
  • [27] Co-Estimation of State-of-Charge and State-of-Health for Lithium-Ion Batteries Considering Temperature and Ageing
    Lai, Xin
    Yuan, Ming
    Tang, Xiaopeng
    Yao, Yi
    Weng, Jiahui
    Gao, Furong
    Ma, Weiguo
    Zheng, Yuejiu
    ENERGIES, 2022, 15 (19)
  • [28] Co-Estimation of State-of-Charge and State-of-Health for High-Capacity Lithium-Ion Batteries
    Xiong, Ran
    Wang, Shunli
    Feng, Fei
    Yu, Chunmei
    Fan, Yongcun
    Cao, Wen
    Fernandez, Carlos
    BATTERIES-BASEL, 2023, 9 (10):
  • [29] Online State-of-Health Estimation of Lithium-Ion Battery Based on Incremental Capacity Curve and BP Neural Network
    Lin, Hongye
    Kang, Longyun
    Xie, Di
    Linghu, Jinqing
    Li, Jie
    BATTERIES-BASEL, 2022, 8 (04):
  • [30] State-of-Health Estimation of Lithium-Ion Battery Based on Interval Capacity for Electric Buses
    Ye, Baolin
    Zhang, Zhaosheng
    Wang, Shuai
    Ma, Yucheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 6096 - 6106