Investigation of Materials for Radio Frequency Antenna Plasma Facing Components

被引:2
作者
Caughman, J. B. O. [1 ]
Butler, K. [2 ]
Curreli, D. [3 ]
Donovan, D. [2 ]
Easley, D. C. [2 ]
Gonzalez-Galvan, A. [3 ]
Johnson, C. A. [1 ]
Meredith, L. [3 ]
Unterberg, E. A. [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[2] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37916 USA
[3] Univ Illinois, Dept Nucl Engn, Urbana, IL 61801 USA
关键词
Optical emission; radio frequency (RF) sheath; sputtering; titanium diboride; tungsten; RESONANCE; ICRF;
D O I
10.1109/TPS.2024.3374252
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The interaction of radio frequency (RF) sheaths with fusion reactor relevant materials (e.g., tungsten and titanium diboride) is being studied on the RF Plasma Interaction Experiment (RF PIE). The RF PIE consists of an electron cyclotron resonance (ECR) plasma source (2.45 GHz, 5 kW) with a biased and heated RF electrode that is used to simulate antenna surfaces in contact with the edge plasma. Helium plasmas (density of similar to 1e18/m(3), electron temperature of 4-5 eV) are being used to explore sheath formation on material surfaces with biases up to 500 V. The erosion of a tungsten surface is being studied spectroscopically using a mirror-linked 1 m Czerny-Turner UV imaging spectrometer with a spectral resolution of 0.012 nm for measuring plasma emission in and near the sheath. Tungsten line emission intensity is higher for RF versus dc biasing for similar plasma conditions and average ion energy. RF biasing causes a broadening of the ion energy distribution function (IEDF) due to the RF sheath, as determined from the hPIC2 code, and results in enhanced sputtering. Calculations of the expected sputtering yield for dc and RF biasing are consistent with experimental observations of changes in the 400.9 nm tungsten line emission intensity as a function of ion energy.
引用
收藏
页码:4037 / 4042
页数:6
相关论文
共 26 条
[1]   Nano-scale microstructure damage by neutron irradiations in a novel Boron-11 enriched TiB2 ultra-high temperature ceramic [J].
Bhattacharya, A. ;
Parish, C. M. ;
Koyanagi, T. ;
Petrie, C. M. ;
King, D. ;
Hilmas, G. ;
Fahrenholtz, W. G. ;
Zinkle, S. J. ;
Katoh, Y. .
ACTA MATERIALIA, 2019, 165 :26-39
[2]   Impact of ICRF on the scrape-off layer and on plasma wall interactions: From present experiments to fusion reactor [J].
Bobkov, V ;
Aguiam, D. ;
Bilato, R. ;
Brezinsek, S. ;
Colas, L. ;
Czarnecka, A. ;
Dumortier, P. ;
Dux, R. ;
Faugel, H. ;
Funfgelder, H. ;
Jacquetg, Ph ;
Kaltenbach, A. ;
Krivska, A. ;
Klepper, C. C. ;
Lerche, E. ;
Lin, Y. ;
Milanesio, D. ;
Maggiora, R. ;
Monakhovg, I ;
Neu, R. ;
Noterdaeme, J-M ;
Ochoukov, R. ;
Piitterich, Th ;
Reinke, M. ;
Tierens, W. ;
Tuccilo, A. ;
Tudisco ;
Van Eester, D. ;
Wright, J. ;
Wukitchk, S. ;
Zhang, W. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :131-140
[3]   Making ICRF power compatible with a high-Z wall in the ASDEX Upgrade [J].
Bobkov, V. ;
Aguiam, D. ;
Bilato, R. ;
Brezinsek, S. ;
Colas, L. ;
Faugel, H. ;
Fuenfgelder, H. ;
Herrmann, A. ;
Jacquot, J. ;
Kallenbach, A. ;
Milanesio, D. ;
Maggiora, R. ;
Neu, R. ;
Noterdaeme, J-M ;
Ochoukov, R. ;
Potzel, S. ;
Puetterich, T. ;
Silva, A. ;
Tierens, W. ;
Tuccilo, A. ;
Tudisco, O. ;
Wang, Y. ;
Yang, Q. ;
Zhang, W. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (01)
[4]   Filterscopes: Spectral line monitors for long-pulse plasma devices [J].
Brooks, N. H. ;
Colchin, R. J. ;
Fehling, D. T. ;
Hillis, D. L. ;
Mu, Y. ;
Unterberg, E. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10)
[5]   The geometry of the ICRF-induced wave-SOL interaction. A multi-machine experimental review in view of the ITER operation [J].
Colas, L. ;
Urbanczyk, G. ;
Goniche, M. ;
Hillairet, J. ;
Bernard, J. -M. ;
Bourdelle, C. ;
Fedorczak, N. ;
Guillemaut, C. ;
Helou, W. ;
Bobkov, V. ;
Ochoukov, R. ;
Jacquet, Ph. ;
Lerche, E. ;
Zhang, X. ;
Qin, C. ;
Klepper, C. C. ;
Lau, C. ;
Van Compernolle, B. ;
Wukitch, S. J. ;
Lin, Y. ;
Ono, M. .
NUCLEAR FUSION, 2022, 62 (01)
[6]   The Filterscope [J].
Colchin, RJ ;
Hillis, DL ;
Maingi, R ;
Klepper, CC ;
Brooks, NH .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (03) :2068-2070
[7]   Modeling far-field radio-frequency sheaths in Alcator C-Mod [J].
D'Ippolito, D. A. ;
Myra, J. R. ;
Ochoukov, R. ;
Whyte, D. G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (08)
[8]   Energy-angle distribution of the ions in the RF sheath of ICRH antennas [J].
Elias, M. ;
Curreli, D. ;
Myra, J. R. .
PHYSICS OF PLASMAS, 2021, 28 (05)
[9]   Ultra-high temperature ceramics: Materials for extreme environments [J].
Fahrenholtz, William G. ;
Hilmas, Greg E. .
SCRIPTA MATERIALIA, 2017, 129 :94-99
[10]   PHYSICS BASIS FOR AN ADVANCED PHYSICS AND ADVANCED TECHNOLOGY TOKAMAK POWER PLANT CONFIGURATION: ARIES-ACT1 [J].
Kessel, C. E. ;
Poli, F. M. ;
Ghantous, K. ;
Gorelenkov, N. N. ;
Rensink, M. E. ;
Rognlien, T. D. ;
Snyder, P. B. ;
St. John, H. ;
Turnbull, A. D. .
FUSION SCIENCE AND TECHNOLOGY, 2015, 67 (01) :75-106