Deep learning transforms colorectal cancer biomarker prediction from histopathology images

被引:4
作者
Ruusuvuori, Pekka [1 ,2 ]
Valkonen, Mira [2 ]
Latonen, Leena [3 ]
机构
[1] Univ Turku, Inst Biomed, Turku, Finland
[2] Tampere Univ, Fac Med & Hlth Technol, Tampere, Finland
[3] Univ Eastern Finland, Inst Biomed, Kuopio, Finland
关键词
D O I
10.1016/j.ccell.2023.08.006
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Artificial intelligence (AI) is rapidly gaining interest in medicine, including pathological assessments for personalized medicine. In this issue of Cancer Cell, Wagner et al. demonstrate superior accuracy of trans-former-based deep learning in predicting biomarker status in CRC. The work has implications for increased efficiency and accuracy in clinical diagnostics guiding treatment decisions in precision oncology.
引用
收藏
页码:1543 / 1545
页数:3
相关论文
共 10 条
[1]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[2]   Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge [J].
Bulten, Wouter ;
Kartasalo, Kimmo ;
Chen, Po-Hsuan Cameron ;
Strom, Peter ;
Pinckaers, Hans ;
Nagpal, Kunal ;
Cai, Yuannan ;
Steiner, David F. ;
van Boven, Hester ;
Vink, Robert ;
Hulsbergen-van de Kaa, Christina ;
van der Laak, Jeroen ;
Amin, Mahul B. ;
Evans, Andrew J. ;
van der Kwast, Theodorus ;
Allan, Robert ;
Humphrey, Peter A. ;
Gronberg, Henrik ;
Samaratunga, Hemamali ;
Delahunt, Brett ;
Tsuzuki, Toyonori ;
Hakkinen, Tomi ;
Egevad, Lars ;
Demkin, Maggie ;
Dane, Sohier ;
Tan, Fraser ;
Valkonen, Masi ;
Corrado, Greg S. ;
Peng, Lily ;
Mermel, Craig H. ;
Ruusuvuori, Pekka ;
Litjens, Geert ;
Eklund, Martin .
NATURE MEDICINE, 2022, 28 (01) :154-+
[3]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[4]   Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning [J].
Echle, Amelie ;
Grabsch, Heike Irmgard ;
Quirke, Philip ;
van den Brandt, Piet A. ;
West, Nicholas P. ;
Hutchins, Gordon G. A. ;
Heij, Lara R. ;
Tan, Xiuxiang ;
Richman, Susan D. ;
Krause, Jeremias ;
Alwers, Elizabeth ;
Jenniskens, Josien ;
Offermans, Kelly ;
Gray, Richard ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Trautwein, Christian ;
Pearson, Alexander T. ;
Boor, Peter ;
Luedde, Tom ;
Gaisa, Nadine Therese ;
Hoffmeister, Michael ;
Kather, Jakob Nikolas .
GASTROENTEROLOGY, 2020, 159 (04) :1406-+
[5]  
Ilse M, 2018, PR MACH LEARN RES, V80
[6]   Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer [J].
Kather, Jakob Nikolas ;
Pearson, Alexander T. ;
Halama, Niels ;
Jaeger, Dirk ;
Krause, Jeremias ;
Loosen, Sven H. ;
Marx, Alexander ;
Boor, Peter ;
Tacke, Frank ;
Neumann, Ulf Peter ;
Grabsch, Heike I. ;
Yoshikawa, Takaki ;
Brenner, Hermann ;
Chang-Claude, Jenny ;
Hoffmeister, Michael ;
Trautwein, Christian ;
Luedde, Tom .
NATURE MEDICINE, 2019, 25 (07) :1054-+
[7]   Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives [J].
Li, Jun ;
Chen, Junyu ;
Tang, Yucheng ;
Wang, Ce ;
Landman, Bennett A. ;
Zhou, S. Kevin .
MEDICAL IMAGE ANALYSIS, 2023, 85
[8]   Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study [J].
Wagner, Sophia J. ;
Reisenbuechler, Daniel ;
West, Nicholas P. ;
Niehues, Jan Moritz ;
Zhu, Jiefu ;
Foersch, Sebastian ;
Veldhuizen, Gregory Patrick ;
Quirke, Philip ;
Grabsch, Heike I. ;
van den Brandt, Piet A. ;
Hutchins, Gordon G. A. ;
Richman, Susan D. ;
Yuan, Tanwei ;
Langer, Rupert ;
Jenniskens, Josien C. A. ;
Offermans, Kelly ;
Mueller, Wolfram ;
Gray, Richard ;
Gruber, Stephen B. ;
Greenson, Joel K. ;
Rennert, Gad ;
Bonner, Joseph D. ;
Schmolze, Daniel ;
Jonnagaddala, Jitendra ;
Hawkins, Nicholas J. ;
Ward, Robyn L. ;
Morton, Dion ;
Seymour, Matthew ;
Magill, Laura ;
Nowak, Marta ;
Hay, Jennifer ;
Koelzer, Viktor H. ;
Church, David N. ;
Matek, Christian ;
Geppert, Carol ;
Peng, Chaolong ;
Zhi, Cheng ;
Ouyang, Xiaoming ;
James, Jacqueline A. ;
Loughrey, Maurice B. ;
Salto-Tellez, Manuel ;
Brenner, Hermann ;
Hoffmeister, Michael ;
Truhn, Daniel ;
Schnabel, Julia A. ;
Boxberg, Melanie ;
Peng, Tingying ;
Kather, Jakob Nikolas .
CANCER CELL, 2023, 41 (09) :1650-+
[9]   Predicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression-Morphology Analysis in Breast Cancer [J].
Wang, Yinxi ;
Kartasalo, Kimmo ;
Weitz, Philippe ;
Acs, Balazs ;
Valkonen, Masi ;
Larsson, Christer ;
Ruusuvuori, Pekka ;
Hartman, Johan ;
Rantalainen, Mattias .
CANCER RESEARCH, 2021, 81 (19) :5115-5126
[10]  
Xu H., 2023, IEEE Reviews in Biomedical Engineering