Dynamic contrastive learning guided by class confidence and confusion degree for medical image segmentation?

被引:19
作者
Chen, Jingkun [1 ,2 ]
Chen, Changrui [2 ]
Huang, Wenjian [1 ]
Zhang, Jianguo [1 ,4 ,5 ]
Debattista, Kurt [2 ]
Han, Jungong [2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
[2] Univ Warwick, WMG Visualizat, Coventry CV4 7AL, England
[3] Univ Sheffield, Dept Comp Sci, Sheffield S10 2TN, England
[4] Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
[5] Peng Cheng Lab, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
Class confusion degree; Dynamic contrastive learning; Medical image segmentation;
D O I
10.1016/j.patcog.2023.109881
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes an intra-Class-confidence and inter-Class-confusion guided Dynamic Contrastive (CCDC) learning framework for medical image segmentation. A core contribution is to dynamically select the most expressive pixels to build positive and negative pairs for contrastive learning at different training phases. For the positive pairs, dynamically adaptive sampling strategies are introduced for sampling different sets of pixels based on their hardness (namely the easiest, easy, and hard pixels). For the negative pairs, to efficiently learn from the classes with high confusion degree w.r.t a query class (i.e., a class containing the query pixels), a new hard class mining strategy is presented. Furthermore, pixel-level representations are extended to the neighbourhood region to leverage the spatial consistency of adjacent pixels. Extensive experiments on the three public datasets demonstrate that the proposed method significantly surpasses the state-of-the-art.
引用
收藏
页数:11
相关论文
共 40 条
[1]   MATTHEWS CORRELATION COEFFICIENT LOSS FOR DEEP CONVOLUTIONAL NETWORKS: APPLICATION TO SKIN LESION SEGMENTATION [J].
Abhishek, Kumar ;
Hamarneh, Ghassan .
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, :225-229
[2]  
Ben Saad Ahmed, 2023, P IEEE CVF WINT C AP, P2380
[3]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[4]   Unsupervised class-to-class translation for domain variations [J].
Cao, Zhiyi ;
Wang, Wei ;
Huo, Lina ;
Niu, Shaozhang .
PATTERN RECOGNITION, 2023, 138
[5]  
Chen J., 2022, IEEE Trans. Med. Imaging
[6]  
Chen T, 2020, PR MACH LEARN RES, V119
[7]   LEARNING AND DEVELOPMENT IN NEURAL NETWORKS - THE IMPORTANCE OF STARTING SMALL [J].
ELMAN, JL .
COGNITION, 1993, 48 (01) :71-99
[8]  
Fan YB, 2017, ADV NEUR IN, V30
[9]   Object Detection with Discriminatively Trained Part-Based Models [J].
Felzenszwalb, Pedro F. ;
Girshick, Ross B. ;
McAllester, David ;
Ramanan, Deva .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) :1627-1645
[10]  
Graves A, 2017, PR MACH LEARN RES, V70