Bernstein-Nikolskii-Markov-type inequalities for algebraic polynomials in a weighted Lebesgue space

被引:5
作者
Ozkartepe, P. [1 ]
Imashkyzy, M. [2 ]
Abdullayev, F. G. [2 ,3 ]
机构
[1] Gaziantep Univ, Gaziantep, Turkiye
[2] Kyrgyz Turkish Manas Univ, Bishkek, Kyrgyzstan
[3] Mersin Univ, Mersin, Turkiye
关键词
Bernstein inequality; Nikolskii inequality; Markov inequality; Algebraic polynomials; Conformal mapping; Quasicircle; WALSH-TYPE INEQUALITIES; HOLDER CONTINUITY; REGIONS; DERIVATIVES; BOUNDARY; CORNERS; GROWTH;
D O I
10.2298/FIL2317701O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Bernstein, Markov and Nikol'skii type inequalities for arbitrary algebraic polynomials with respect to a weighted Lebesgue space, where the contour and weight functions have some singularities on a given contour.
引用
收藏
页码:5701 / 5715
页数:15
相关论文
共 51 条
[1]   On the growth of mth derivatives of algebraic polynomials in the weighted Lebesgue space [J].
Abdullayev, F. G. ;
Imashkyzy, M. .
APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2022, 30 (01) :249-282
[2]   Bernstein-Nikol'skii-Type Inequalities for Algebraic Polynomials from the Bergman Space in Domains of the Complex Plane [J].
Abdullayev, F. G. ;
Gun, C. D. .
UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (04) :513-531
[3]   Polynomial Inequalities in Regions with Corners in the Weighted Lebesgue Spaces [J].
Abdullayev, F. G. .
FILOMAT, 2017, 31 (18) :5647-5670
[4]   Polynomial Inequalities in Quasidisks on Weighted Bergman Spaces [J].
Abdullayev, F. G. ;
Tunc, T. ;
Abdullayev, G. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2017, 69 (05) :675-695
[5]   Uniform and pointwise Bernstein-Walsh-type inequalities on a quasidisk in the complex plane [J].
Abdullayev, F. G. ;
Ozkartepe, P. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (02) :285-310
[6]   ON THE GROWTH OF ALGEBRAIC POLYNOMIALS IN THE WHOLE COMPLEX PLANE [J].
Abdullayev, F. G. ;
Ozkartepe, N. P. .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (04) :699-725
[7]   ON BERNSTEIN-WALSH-TYPE LEMMAS IN REGIONS OF THE COMPLEX PLANE [J].
Abdullayev, F. G. ;
Aral, N. D. .
UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (03) :337-350
[8]   On the orthogonal polynomials with weight having singularities on the boundary of regions in the complex plane [J].
Abdullayev, F. G. ;
Deger, U. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (02) :235-250
[9]  
Abdullayev F.G., 1983, SSR SER YA FIZIKO TE, V4, P7
[10]   Bernstein-Walsh type inequalities for derivatives of algebraic polynomials in quasidisks [J].
Abdullayev, Fahreddin G. .
OPEN MATHEMATICS, 2021, 19 (01) :1847-1876