An integrated platform for high-throughput nanoscopy

被引:22
|
作者
Barentine, Andrew E. S. [1 ,2 ]
Lin, Yu [1 ,2 ]
Courvan, Edward M. [1 ,3 ]
Kidd, Phylicia [1 ]
Liu, Miao [4 ]
Balduf, Leonhard [1 ,5 ]
Phan, Timy [1 ,5 ]
Rivera-Molina, Felix [1 ]
Grace, Michael R. [1 ]
Marin, Zach [1 ,2 ,6 ]
Lessard, Mark [1 ]
Chen, Juliana Rios [1 ]
Wang, Siyuan [1 ,4 ]
Neugebauer, Karla M. [1 ,3 ]
Bewersdorf, Joerg [1 ,2 ,7 ,8 ]
Baddeley, David [1 ,6 ,8 ]
机构
[1] Yale Sch Med, Dept Cell Biol, New Haven, CT 06510 USA
[2] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
[3] Yale Sch Med, Dept Mol Biophys & Biochem, New Haven, CT USA
[4] Yale Sch Med, Dept Genet, New Haven, CT USA
[5] Univ Appl Sci, Dept Comp Sci & Math, Munich, Germany
[6] Univ Auckland, Auckland Bioengn Inst, Auckland, New Zealand
[7] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[8] Yale Univ, Nanobiol Inst, West Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
SINGLE-MOLECULE LOCALIZATION; SUPERRESOLUTION MICROSCOPY;
D O I
10.1038/s41587-023-01702-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-molecule localization microscopy enables three-dimensional fluorescence imaging at tens-of-nanometer resolution, but requires many camera frames to reconstruct a super-resolved image. This limits the typical throughput to tens of cells per day. While frame rates can now be increased by over an order of magnitude, the large data volumes become limiting in existing workflows. Here we present an integrated acquisition and analysis platform leveraging microscopy-specific data compression, distributed storage and distributed analysis to enable an acquisition and analysis throughput of 10,000 cells per day. The platform facilitates graphically reconfigurable analyses to be automatically initiated from the microscope during acquisition and remotely executed, and can even feed back and queue new acquisition tasks on the microscope. We demonstrate the utility of this framework by imaging hundreds of cells per well in multi-well sample formats. Our platform, implemented within the PYthon-Microscopy Environment (PYME), is easily configurable to control custom microscopes, and includes a plugin framework for user-defined extensions. A fast data processing platform enables super-resolution microscopy with increased throughput.
引用
收藏
页码:1549 / +
页数:15
相关论文
共 50 条
  • [1] An integrated platform for high-throughput nanoscopy
    Andrew E. S. Barentine
    Yu Lin
    Edward M. Courvan
    Phylicia Kidd
    Miao Liu
    Leonhard Balduf
    Timy Phan
    Felix Rivera-Molina
    Michael R. Grace
    Zach Marin
    Mark Lessard
    Juliana Rios Chen
    Siyuan Wang
    Karla M. Neugebauer
    Joerg Bewersdorf
    David Baddeley
    Nature Biotechnology, 2023, 41 : 1549 - 1556
  • [2] PYME: an integrated platform for high-throughput nanoscopy
    Barentine, Andrew E. S.
    Lin, Yu
    Courvan, Edward M.
    Kidd, Phylicia
    Liu, Miao
    Balduf, Leonhard
    Phan, Timy
    Rivera-Molina, Felix
    Grace, Michael R.
    Marin, Zach
    Chen, Juliana Rios
    Wang, Siyuan
    Neugebauer, Karla M.
    Baddeley, David
    Bewersdorf, Joerg
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 137 - 137
  • [3] PYME: An Integrated Platform for High-Throughput Smart Nanoscopy
    Barentine, Andrew E. S.
    Lin, Yu
    Kidd, Phylicia
    Liu, Miao
    Balduf, Leonhard
    Grace, Michael R.
    Courchaine, Edward
    Marine, Zach
    Chen, Juliana Rios
    Wang, Siyuan
    Bewersdorf, Joerg
    Baddeley, David
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 181A - 181A
  • [4] RhizoPot platform: A high-throughput in situ root phenotyping platform with integrated hardware and software
    Zhao, Hongjuan
    Wang, Nan
    Sun, Hongchun
    Zhu, Lingxiao
    Zhang, Ke
    Zhang, Yongjiang
    Zhu, Jijie
    Li, Anchang
    Bai, Zhiying
    Liu, Xiaoqing
    Dong, Hezhong
    Liu, Liantao
    Li, Cundong
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [5] A CCD-based integrated platform for accelerated high-throughput screening
    Boldt-Houle, D
    Yan, S
    Olesen, C
    D'Eon, B
    Lee, J
    Liu, B
    Bodziuch, U
    Chiulli, A
    Atwood, J
    Gambini, M
    Voyta, J
    Bronstein, I
    AMERICAN LABORATORY, 2000, 32 (03) : 60 - +
  • [6] WindSTORM: Robust online image processing for high-throughput nanoscopy
    Ma, Hongqiang
    Xu, Jianquan
    Liu, Yang
    SCIENCE ADVANCES, 2019, 5 (04)
  • [7] High-throughput multi-color reliable SMLM nanoscopy
    Mau, Adrien
    Friedl, Karoline
    Caorsi, Valentina
    Bourg, Nicolas
    Leterrier, Christophe
    Leveque-Fort, Sandrine
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 131A - 131A
  • [8] High-throughput Interbacterial Competition Platform
    Lin, Hsiao-Han
    Lai, Erh-Min
    BIO-PROTOCOL, 2020, 10 (17):
  • [9] Software Platform for High-Throughput Glycomics
    Vakhrushev, S. Y.
    Dadimov, D.
    Peter-Katalinic, J.
    ANALYTICAL CHEMISTRY, 2009, 81 (09) : 3252 - 3260