ON ε-REGULAR SOLUTIONS TO DIFFERENTIAL EQUATIONS WITH A SMALL PARAMETER

被引:0
作者
Kachalov, V. I. [1 ]
机构
[1] Natl Res Univ MPEI Moscow, Moscow, Russia
关键词
evolution problem; strongly continuous semigroup; e-regular solution;
D O I
10.1134/S0037446623010111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider some nonlinear evolution equation with an unbounded operator depending on a small parameter on the right-hand side and study the existence of solutions holomorphically depending on a parameter. We introduce the notion of epsilon-regular solution and establish the conditions for the epsilon-regular solution to coincide with a solution to this equation.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 19 条
  • [1] [Anonymous], 1971, Translations of Mathematical Monographs
  • [2] [Anonymous], 1988, Asymptotic Methods and Perturbation Theory
  • [3] Bibikov Yu. N., 1981, General Course in Ordinary Differential Equations
  • [4] Bobodzhanov A., 2019, AXIOMS, V8
  • [5] CERCIGNANI C., 1990, MATH METHODS KINETIC
  • [6] Dezin A., 2011, MEMORIES SELECTED WO
  • [7] Asymptotic Analysis of Spectrum and Stability for One Class of Singularly Perturbed Neutral-Type Time-Delay Systems
    Glizer, Valery Y.
    [J]. AXIOMS, 2021, 10 (04)
  • [8] A NOVEL APPROACH TO EXACT SLOW-FAST DECOMPOSITION OF LINEAR SINGULARLY PERTURBED SYSTEMS WITH SMALL DELAYS
    Glizer, Valery Y.
    Fridman, Emilia
    Feigin, Yuri
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (01) : 236 - 274
  • [9] Ju Daleckii, 1974, STABILITY SOLUTIONS
  • [10] Hydrostatic equilibrium of stars without electroneutrality constraint
    Krivoruchenko, M., I
    Nadyozhin, D. K.
    Yudin, A., V
    [J]. PHYSICAL REVIEW D, 2018, 97 (08)