Phase stability and coercivity in La2Fe14B magnet

被引:6
作者
Liu, X. B. [1 ]
Nlebedim, I. C. [1 ]
机构
[1] Ames Natl Lab US DOE, Crit Mat Inst, Ames, IA 50011 USA
关键词
FE; ND; LA; MICROSTRUCTURE; CRYSTAL; PR; CE;
D O I
10.1063/9.0000403
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Critical rare-earth free La2Fe14B (2:14:1) has the potential to be a gap permanent magnet. However, La2Fe14B decomposes into La, alpha-Fe, and LaFe4B4 phases below 1067 K. The phase stability and coercivity have been studied in La2Fe14B magnet using first principles DFT (density functional theory) calculation and micromagnetic simulation. For a perfect La2Fe14 B cube (edge length of 256 nm) without any structural defects and soft magnetic secondary phases, the coercivity (8.5 kOe) is reduced to & SIM;40% of its magnetocrystalline anisotropy field (H-A = 20 kOe). Further, the coercivity sharply reduces to 3.2 kOe upon forming a thin layer (2 nm) of alpha-Fe on the surface of the La2Fe14B cube particle. The DFT calculations indicate that a partial replacement of La by other rare-earth (RE) elements can enhance the structural stability of 2:14:1. The gains in cohesive energy are 0.75, 0.10, and 0.33 eV per formula unit in (La0.5RE0.5)(2)Fe14B with RE = Ce, Pr, and Nd, respectively. Stabilizing the 2:14:1 structure and mitigating the formation of soft magnetic structural defects or impurity phases such as alpha-Fe is necessary to develop La2Fe14B based magnet, which can be moderately achieved via partial substitution of La by other rare earth elements such as Ce, Pr, and Nd.
引用
收藏
页数:5
相关论文
共 36 条
[1]  
[Anonymous], 1963, Micromagnetics
[2]   Atomic scale insights into the segregation/partitioning behaviour in as-sintered multi-main-phase Nd-Ce-Fe-B permanent magnets [J].
Chen, Hansheng ;
Han, Rui ;
Qu, Jiangtao ;
Yao, Yin ;
Liu, Jianqiang ;
Li, Wei ;
Ringer, Simon P. ;
Dong, Shengzhi ;
Zheng, Rongkun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 846
[3]   PR-FE AND ND-FE-BASED MATERIALS - A NEW CLASS OF HIGH-PERFORMANCE PERMANENT-MAGNETS [J].
CROAT, JJ ;
HERBST, JF ;
LEE, RW ;
PINKERTON, FE .
JOURNAL OF APPLIED PHYSICS, 1984, 55 (06) :2078-2082
[4]   Tuning Ce distribution for high performanced Nd-Ce-Fe-B sintered magnets [J].
Fan, Xiaodong ;
Guo, Shuai ;
Chen, Kan ;
Chen, Renjie ;
Lee, Don ;
You, Caiyin ;
Yan, Aru .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 419 :394-399
[5]   Micromagnetic modelling - the current state of the art [J].
Fidler, J ;
Schrefl, T .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (15) :R135-R156
[6]   Micromagnetics of rare-earth efficient permanent magnets [J].
Fischbacher, Johann ;
Kovacs, Alexander ;
Gusenbauer, Markus ;
Oezelt, Harald ;
Exl, Lukas ;
Bance, Simon ;
Schrefl, Thomas .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (19)
[7]   Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient [J].
Gutfleisch, Oliver ;
Willard, Matthew A. ;
Bruck, Ekkes ;
Chen, Christina H. ;
Sankar, S. G. ;
Liu, J. Ping .
ADVANCED MATERIALS, 2011, 23 (07) :821-842
[8]   FORMATION OF FE14LA2B PHASE IN AS-CAST AND MELT-SPUN SAMPLES [J].
HADJIPANAYIS, GC ;
TAO, YF ;
GUDIMETTA, K .
APPLIED PHYSICS LETTERS, 1985, 47 (07) :757-758
[9]   O(N) LDA+U electronic structure calculation method based on the nonorthogonal pseudoatomic orbital basis [J].
Han, MJ ;
Ozaki, T ;
Yu, J .
PHYSICAL REVIEW B, 2006, 73 (04)
[10]   R2FE14B MATERIALS - INTRINSIC-PROPERTIES AND TECHNOLOGICAL ASPECTS [J].
HERBST, JF .
REVIEWS OF MODERN PHYSICS, 1991, 63 (04) :819-898