A time multiscale decomposition in cyclic elasto-plasticity

被引:3
作者
Pasquale, Angelo [1 ,2 ]
Rodriguez, Sebastian [1 ]
Nguyen, Khanh [3 ]
Ammar, Amine [2 ,4 ]
Chinesta, Francisco [1 ,4 ]
机构
[1] Arts & Metiers Inst Technol, ESI Grp Chair, PIMM Lab, 151 Blvd Hop, F-75013 Paris, France
[2] Arts & Metiers Inst Technol, ESI Grp Chair, LAMPA Lab, BP 93525, 2 Blvd Ronceray, F-49035 Angers 01, France
[3] Univ Politecn Madrid, Escuela Tecn Super Ingn Aeronaut & Espacio, 3 Pza Cardenal Cisneros, Madrid 28040, Spain
[4] CNRS, CREATE LTD, 1 Create Way,08-01 CREATE Tower, Singapore 138602, Singapore
基金
新加坡国家研究基金会;
关键词
PGD; Time multiscale; Cyclic elasto-plasticity; History dependency; Nonlinear problems; PROPER GENERALIZED DECOMPOSITION; MODEL;
D O I
10.1016/j.camwa.2023.08.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the numerical simulation of time-dependent problems, recent works suggest the use of a time marching scheme based on a tensorial decomposition of the time axis. This time-separated representation is straightforwardly introduced in the framework of the Proper Generalized Decomposition (PGD). The time coordinate is transformed into a multi-dimensional time through new separated coordinates, the micro and the macro times. From a physical viewpoint, the time evolution of all the quantities involved in the problem can be followed along two time scales, the fast one (micro-scale) and the slow one (macro-scale). In this paper, the method is applied to compute the quasi-static response of an elasto-plastic structure under cyclic loading. The study shows the existence of a physically consistent temporal decomposition in computational cyclic plasticity. Such micro-macro characterization may be particularly appealing in high-cycle loading analyses, such as aging and fatigue, addressed in a future work in progress.
引用
收藏
页码:75 / 83
页数:9
相关论文
共 20 条
[1]   Non-incremental response evaluation in geometrically nonlinear structural dynamics using a space-time stiffness operator [J].
Arjoune, Tahar ;
Markert, Bernd ;
Bamer, Franz .
COMPUTATIONAL MECHANICS, 2022, 70 (02) :309-333
[2]   The Proper Generalized Decomposition as a space-time integrator for elastoplastic problems [J].
Bergheau, Jean-Michel ;
uchiatti, Sylvain ;
Roux, Jean-Christophe ;
Feulvarch, Eric ;
Tissot, Samuel ;
Perrin, Gilles .
COMPTES RENDUS MECANIQUE, 2016, 344 (11-12) :759-768
[3]   A kinetic two-scale damage model for high-cycle fatigue simulation using multi-temporal Latin framework [J].
Bhattacharyya, Mainak ;
Fau, Arnelie ;
Desmorat, Rodrigue ;
Alameddin, Shadi ;
Neron, David ;
Ladeveze, Pierre ;
Nackenhorst, Udo .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2019, 77
[4]   A multi-temporal scale model reduction approach for the computation of fatigue damage [J].
Bhattacharyya, Mainak ;
Fau, Amelie ;
Nackenhorst, Udo ;
Neron, David ;
Ladeveze, Pierre .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 :630-656
[5]   Fatigue modeling using neural networks: A comprehensive review [J].
Chen, Jie ;
Liu, Yongming .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2022, 45 (04) :945-979
[6]   PGD-Based Computational Vademecum for Efficient Design, Optimization and Control [J].
Chinesta, F. ;
Leygue, A. ;
Bordeu, F. ;
Aguado, J. V. ;
Cueto, E. ;
Gonzalez, D. ;
Alfaro, I. ;
Ammar, A. ;
Huerta, A. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2013, 20 (01) :31-59
[7]   Proper generalized decomposition of multiscale models [J].
Chinesta, F. ;
Ammar, A. ;
Cueto, E. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) :1114-1132
[8]  
Halama R., 2012, Phenomenological Modelling of Cyclic Plasticity, DOI DOI 10.5772/35902
[9]  
Hashiguchi K., 2012, Introduction to Finite Strain Theory for Continuum ElastoPlasticity
[10]   Multiscale proper generalized decomposition based on the partition of unity [J].
Ibanez, Ruben ;
Ammar, Amine ;
Cueto, Elias ;
Huerta, Antonio ;
Duval, Jean-Louis ;
Chinesta, Francisco .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (06) :727-747