Detecting Paroxysmal Atrial Fibrillation From an Electrocardiogram in Sinus Rhythm External Validation of the AI Approach

被引:13
作者
Gruwez, Henri [1 ,2 ,3 ]
Barthels, Myrte [4 ]
Haemers, Peter [2 ]
Verbrugge, Frederik H. [5 ,6 ]
Dhont, Sebastiaan [1 ,3 ]
Meekers, Evelyne [1 ,2 ,3 ]
Wouters, Femke [7 ,8 ]
Nuyens, Dieter [1 ]
Pison, Laurent [1 ]
Vandervoort, Pieter [1 ]
Pierlet, Noella [3 ,4 ,9 ]
机构
[1] Hosp East Limburg, Dept Cardiol, Genk, Belgium
[2] Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium
[3] Hasselt Univ, Doctoral Sch Med & Life Sci, Hasselt, Belgium
[4] Hosp East Limburg, Data Sci Dept, Genk, Belgium
[5] Univ Hosp Brussels, Ctr Cardiovasc Dis, Jette, Belgium
[6] Vrije Univ Brussel, Fac Med & Pharm, Brussels, Belgium
[7] Hasselt Univ, Mobile Hlth Unit, LCRC, Hasselt, Belgium
[8] Hosp East Limburg, Future Hlth Dept, Genk, Belgium
[9] Univ Hosp Brussels, Ctr Cardiovasc Dis, Schiepse Bos 6, B-3600 Genk, Belgium
关键词
artificial intelligence; atrial fibrillation; deep neural network; digital health; electrocardiogram; ARTIFICIAL-INTELLIGENCE; POPULATION;
D O I
10.1016/j.jacep.2023.04.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Atrial fibrillation (AF) may occur asymptomatically and can be diagnosed only with electrocardiography (ECG) while the arrhythmia is present.OBJECTIVES The aim of this study was to independently validate the approach of using artificial intelligence (AI) to identify underlying paroxysmal AF from a 12-lead ECG in sinus rhythm (SR).METHODS An AI algorithm was trained to identify patients with underlying paroxysmal AF, using electrocardiographic data from all in-and outpatients from a single center with at least 1 ECG in SR. For patients without AF, all ECGs in SR were included. For patients with AF, all ECGs in SR starting 31 days before the first AF event were included. The patients were randomly allocated to training, internal validation, and testing datasets in a 7:1:2 ratio. In a secondary analysis, the AF prevalence of the testing group was modified. Additionally, the performance of the algorithm was validated at an external hospital.RESULTS The dataset consisted of 494,042 ECGs in SR from 142,310 patients. Testing the model on the first ECG of each patient (AF prevalence 9.0%) resulted in accuracy of 78.1% (95% CI: 77.6%-78.5%), area under the receiver operating characteristic curve of 0.87 (95% CI: 0.86-0.87), and area under the precision recall curve (AUPRC) of 0.48 (95% CI: 0.46-0.50). In a low-risk group (AF prevalence 3%), the AUPRC decreased to 0.21 (95% CI: 0.18-0.24). In a high-risk group (AF prevalence 30%), the AUPRC increased to 0.76 (95% CI: 0.75-0.78). This performance was robust when validated in an external hospital.CONCLUSIONS The approach of using an AI-enabled electrocardiographic algorithm for the identification of patients with underlying paroxysmal AF from ECGs in SR was independently validated. (J Am Coll Cardiol EP 2023;9:1771-1782)& COPY; 2023 by the American College of Cardiology Foundation.
引用
收藏
页码:1771 / 1782
页数:12
相关论文
共 53 条
[1]  
Aledhari M, 2020, IEEE ACCESS, V8, P140699, DOI [10.1109/ACCESS.2020.3013541, 10.1109/access.2020.3013541]
[2]   Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE-AF Consortium [J].
Alonso, Alvaro ;
Krijthe, Bouwe P. ;
Aspelund, Thor ;
Stepas, Katherine A. ;
Pencina, Michael J. ;
Moser, Carlee B. ;
Sinner, Moritz F. ;
Sotoodehnia, Nona ;
Fontes, Joao D. ;
Janssens, A. Cecile J. W. ;
Kronmal, Richard A. ;
Magnani, Jared W. ;
Witteman, Jacqueline C. ;
Chamberlain, Alanna M. ;
Lubitz, Steven A. ;
Schnabel, Renate B. ;
Agarwal, Sunil K. ;
McManus, David D. ;
Ellinor, Patrick T. ;
Larson, Martin G. ;
Burke, Gregory L. ;
Launer, Lenore J. ;
Hofman, Albert ;
Levy, Daniel ;
Gottdiener, John S. ;
Kaeaeb, Stefan ;
Couper, David ;
Harris, Tamara B. ;
Soliman, Elsayed Z. ;
Stricker, Bruno H. C. ;
Gudnason, Vilmundur ;
Heckbert, Susan R. ;
Benjamin, Emelia J. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2013, 2 (02) :e000102
[3]   ELECTROCARDIOGRAPHIC DIAGNOSIS OF LEFT ATRIAL ENLARGEMENT [J].
ALPERT, MA ;
MUNUSWAMY, K .
ARCHIVES OF INTERNAL MEDICINE, 1989, 149 (05) :1161-1165
[4]   All-cause mortality in 272 186 patients hospitalized with incident atrial fibrillation 1995-2008: a Swedish nationwide long-term case-control study [J].
Andersson, Tommy ;
Magnuson, Anders ;
Bryngelsson, Ing-Liss ;
Frobert, Ole ;
Henriksson, Karin M. ;
Edvardsson, Nils ;
Poci, Dritan .
EUROPEAN HEART JOURNAL, 2013, 34 (14) :1061-1067
[5]   Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs [J].
Attia, Zachi, I ;
Friedman, Paul A. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Kapa, Suraj .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
[6]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[7]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[8]   A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm [J].
Baek, Yong-Soo ;
Lee, Sang-Chul ;
Choi, Wonik ;
Kim, Dae-Hyeok .
SCIENTIFIC REPORTS, 2021, 11 (01)
[9]   INDEPENDENT RISK-FACTORS FOR ATRIAL-FIBRILLATION IN A POPULATION-BASED COHORT - THE FRAMINGHAM HEART-STUDY [J].
BENJAMIN, EJ ;
LEVY, D ;
VAZIRI, SM ;
DAGOSTINO, RB ;
BELANGER, AJ ;
WOLF, PA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1994, 271 (11) :840-844
[10]   Diagnostic ability of B-type natriuretic peptide and impedance cardiography: Testing to identify left ventricular dysfunction in hypertensive patients [J].
Bhalla, V ;
Isakson, S ;
Bhalla, MA ;
Lin, JP ;
Clopton, P ;
Gardetto, N ;
Maisel, AS .
AMERICAN JOURNAL OF HYPERTENSION, 2005, 18 (02) :73S-81S