A Set-Theoretic Control Approach to the Trajectory Tracking Problem for Input-Output Linearized Wheeled Mobile Robots

被引:2
作者
Tiriolo, Cristian [1 ]
Lucia, Walter [1 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 1M8, Canada
来源
IEEE CONTROL SYSTEMS LETTERS | 2023年 / 7卷
基金
加拿大自然科学与工程研究理事会;
关键词
Robots; Trajectory; Trajectory tracking; Mobile robots; Computational modeling; Service robots; Robust control; wheeled mobile robots; set-theoretic receding horizon control; Index Terms; PREDICTIVE CONTROL; DESIGN;
D O I
10.1109/LCSYS.2023.3286774
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter proposes a set-theoretic receding horizon control scheme to address the trajectory tracking problem for input-constrained differential-drive robots. The proposed solution is derived starting from an input-output linearized description of the robot kinematics and a worst-case characterization of the orientation-dependent input constraint acting on the feedback linearized model. In particular, offline, given a worst-case characterization of the constraint set, we analytically design the smallest robust control invariant region for the tracking error. Moreover, such a region is recursively enlarged by computing a family of robust one-step controllable sets whose union characterizes the controller's domain of attraction. Online, such sets and the knowledge of the current robot's orientation are leveraged to define a non-conservative control law ensuring bounded tracking error. The effectiveness of the proposed strategy is experimentally validated using a Khepera IV robot, and its performance is contrasted with four alternative trajectory tracking algorithms.
引用
收藏
页码:2347 / 2352
页数:6
相关论文
共 15 条
[1]   An ellipsoidal off-line MPC scheme for uncertain polytopic discrete-time systems [J].
Angeli, David ;
Casavola, Alessandro ;
Franze, Giuseppe ;
Mosca, Edoardo .
AUTOMATICA, 2008, 44 (12) :3113-3119
[2]   A novel trajectory-tracking control law for wheeled mobile robots [J].
Blazic, Saso .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2011, 59 (11) :1001-1007
[3]  
Borrelli F., 2017, PREDICTIVE CONTROL L, DOI [10.1017/9781139061759, DOI 10.1017/9781139061759]
[4]   A Two-Stage Optimization-Based Motion Planner for Safe Urban Driving [J].
Eiras, Francisco ;
Hawasly, Majd ;
Albrecht, Stefano, V ;
Ramamoorthy, Subramanian .
IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (02) :822-834
[5]   Fault-Tolerant Cooperative Control Design of Multiple Wheeled Mobile Robots [J].
Kamel, Mohamed A. ;
Yu, Xiang ;
Zhang, Youmin .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (02) :756-764
[6]   Tracking-error model-based predictive control for mobile robots in real time [J].
Klancar, Gregor ;
Skrjanc, Igor .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2007, 55 (06) :460-469
[7]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[8]   Input-output linearizing control of constrained nonlinear processes [J].
Kurtz, MJ ;
Henson, MA .
JOURNAL OF PROCESS CONTROL, 1997, 7 (01) :3-17
[9]  
Kurzhanski A.B., 1997, Ellipsoidal calculus for estimation and control
[10]   WMR control via dynamic feedback linearization: Design, implementation, and experimental validation [J].
Oriolo, G ;
De Luca, A ;
Vendittelli, M .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2002, 10 (06) :835-852