Resolving domain positions of cellobiose dehydrogenase by small angle X-ray scattering

被引:3
作者
Motycka, Bettina [1 ,2 ,3 ]
Csarman, Florian [1 ]
Tscheliessnig, Rupert [2 ,4 ]
Hammel, Michal [3 ]
Ludwig, Roland [1 ]
机构
[1] Univ Nat Resources & Life Sci, Inst Food Technol, Dept Food Sci & Technol, Muthgasse 11-1-56, A-1190 Vienna, Austria
[2] Univ Nat Resources & Life Sci, Inst Bioproc Sci & Engn, Dept Biotechnol, Vienna, Austria
[3] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA USA
[4] Med Univ Graz, Gottfried Schatz Res Ctr, Div Biophys, Graz, Austria
基金
奥地利科学基金会;
关键词
cellobiose dehydrogenase; conformational changes; interdomain electron transfer; multistate modelling; small angle X-ray scattering; ELECTRON-TRANSFER; PHANEROCHAETE-CHRYSOSPORIUM; DEGRADATION; CELLULOSE; PROTEINS; FLAVOCYTOCHROME; COMPLEXES; CRYSTALLOGRAPHY; FLEXIBILITY; COMPUTATION;
D O I
10.1111/febs.16885
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The interdomain electron transfer (IET) between the catalytic flavodehydrogenase domain and the electron-transferring cytochrome domain of cellobiose dehydrogenase (CDH) plays an essential role in biocatalysis, biosensors and biofuel cells, as well as in its natural function as an auxiliary enzyme of lytic polysaccharide monooxygenase. We investigated the mobility of the cytochrome and dehydrogenase domains of CDH, which is hypothesised to limit IET in solution by small angle X-ray scattering (SAXS). CDH from Myriococcum thermophilum (syn. Crassicarpon hotsonii, syn. Thermothelomyces myriococcoides) was probed by SAXS to study the CDH mobility at different pH and in the presence of divalent cations. By comparison of the experimental SAXS data, using pair-distance distribution functions and Kratky plots, we show an increase in CDH mobility at higher pH, indicating alterations of domain mobility. To further visualise CDH movement in solution, we performed SAXS-based multistate modelling. Glycan structures present on CDH partially masked the resulting SAXS shapes, we diminished these effects by deglycosylation and studied the effect of glycoforms by modelling. The modelling shows that with increasing pH, the cytochrome domain adopts a more flexible state with significant separation from the dehydrogenase domain. On the contrary, the presence of calcium ions decreases the mobility of the cytochrome domain. Experimental SAXS data, multistate modelling and previously reported kinetic data show how pH and divalent ions impact the closed state necessary for the IET governed by the movement of the CDH cytochrome domain.
引用
收藏
页码:4726 / 4743
页数:18
相关论文
共 47 条
[1]   Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii [J].
Baminger, U ;
Subramaniam, SS ;
Renganathan, V ;
Haltrich, D .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (04) :1766-1774
[2]   CELLOBIOSE OXIDASE OF PHANEROCHAETE-CHRYSOSPORIUM ENHANCES CRYSTALLINE CELLULOSE DEGRADATION BY CELLULASES [J].
BAO, WJ ;
RENGANATHAN, V .
FEBS LETTERS, 1992, 302 (01) :77-80
[3]   Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases [J].
Beeson, William T. ;
Phillips, Christopher M. ;
Cate, Jamie H. D. ;
Marletta, Michael A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (02) :890-892
[4]   Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms [J].
Bodenheimer, Annette M. ;
ODell, William B. ;
Oliver, Ryan C. ;
Qian, Shuo ;
Stanley, Christopher B. ;
Meilleur, Flora .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2018, 1862 (04) :1031-1039
[5]   Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering [J].
Bodenheimer, Annette M. ;
O'Dell, William B. ;
Stanley, Christopher B. ;
Meilleur, Flora .
CARBOHYDRATE RESEARCH, 2017, 448 :200-204
[6]   Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source [J].
Classen, Scott ;
Hura, Greg L. ;
Holton, James M. ;
Rambo, Robert P. ;
Rodic, Ivan ;
McGuire, Patrick J. ;
Dyer, Kevin ;
Hammel, Michal ;
Meigs, George ;
Frankel, Kenneth A. ;
Tainer, John A. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2013, 46 :1-13
[7]   Lignocellulose degradation mechanisms across the Tree of Life [J].
Cragg, Simon M. ;
Beckham, Gregg T. ;
Bruce, Neil C. ;
Bugg, Timothy D. H. ;
Distel, Daniel L. ;
Dupree, Paul ;
Etxabe, Amaia Green ;
Goodell, Barry S. ;
Jellison, Jody ;
McGeehan, John E. ;
McQueen-Mason, Simon J. ;
Schnorr, Kirk ;
Walton, Paul H. ;
Watts, Joy E. M. ;
Zimmer, Martin .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2015, 29 :108-119
[8]  
Csarman Florian, 2020, Enzymes, V47, P457, DOI 10.1016/bs.enz.2020.06.002
[9]   Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency [J].
Eibinger, Manuel ;
Ganner, Thomas ;
Bubner, Patricia ;
Rosker, Stephanie ;
Kracher, Daniel ;
Haltrich, Dietmar ;
Ludwig, Roland ;
Plank, Harald ;
Nidetzky, Bernd .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (52) :35929-35938
[10]   Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase [J].
Felice, Alfons K. G. ;
Schuster, Christian ;
Kadek, Alan ;
Filandr, Frantisek ;
Laurent, Christophe V. F. P. ;
Scheiblbrandner, Stefan ;
Schwaiger, Lorenz ;
Schachinger, Franziska ;
Kracher, Daniel ;
Sygmund, Christoph ;
Man, Petr ;
Halada, Petr ;
Oostenbrink, Chris ;
Ludwig, Roland .
ACS CATALYSIS, 2021, 11 (02) :517-532