Bias reduction estimation for drift coefficient in diffusion models with jumps

被引:0
|
作者
Song, Yuping [1 ,2 ]
Li, Hangyan [1 ]
机构
[1] Shanghai Normal Univ, Sch Finance & Business, Shanghai, Peoples R China
[2] Shanghai Normal Univ, Sch Finance & Business, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Jump-diffusion model; local linear threshold estimator; asymptotic normality; bias correction; high-frequency financial data; NONPARAMETRIC-ESTIMATION; THRESHOLD ESTIMATION;
D O I
10.1080/02331888.2023.2201504
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we reconstruct the local linear threshold estimator for the drift coefficient of a semimartingale with jumps. Under mild conditions, we provide the asymptotic normality of our estimator in the presence of finite activity jumps whether the underlying process is Harris recurrent or positive recurrent. Simulation studies for different models show that our estimator performs better than previous research in finite samples, which can correct the boundary bias automatically. Finally, the estimator is illustrated empirically through the stock index from Shanghai Stock Exchange in China under 15-minute high sampling frequency.
引用
收藏
页码:597 / 616
页数:20
相关论文
共 50 条
  • [41] Non parametric estimation of the diffusion coefficient of a diffusion process
    Soulier, P
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1998, 16 (01) : 185 - 200
  • [42] Bias reduction in autoregressive models
    Patterson, KD
    ECONOMICS LETTERS, 2000, 68 (02) : 135 - 141
  • [43] Estimation of the Diffusion Coefficient from Crossings
    Danielle Florens
    Statistical Inference for Stochastic Processes, 1998, 1 (2) : 175 - 195
  • [44] CONVERGENCE OF SOLUTIONS AND THEIR EXIT TIMES IN DIFFUSION MODELS WITH JUMPS
    Moroz, A. G.
    Tomashyk, V. V.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2014, 50 (02) : 288 - 296
  • [45] Thermal drift reduction in photodiode dosimeters with switching bias
    Ruiz-Garcia, I.
    Roman-Raya, J.
    Escobedo, P.
    Andjelkovic, M.
    Guirado, D.
    Palma, A. J.
    Carvajal, M. A.
    MEASUREMENT, 2022, 199
  • [46] NUMERICAL ESTIMATION OF A DIFFUSION COEFFICIENT IN SUBDIFFUSION
    Jin, Bangti
    Zhou, Zhi
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (02) : 1466 - 1496
  • [48] Concept drift estimation with graphical models
    Riso, Luigi
    Guerzoni, Marco
    INFORMATION SCIENCES, 2022, 606 : 786 - 804
  • [49] Estimation of image bias field by diffusion
    Chen, Xi
    Sang, Nong
    Huang, Rui
    Ren, Hexing
    OPTIK, 2013, 124 (20): : 4590 - 4593
  • [50] Mis-estimation and bias of hyperpolarized apparent diffusion coefficient measurements due to slice profile effects
    Gordon, Jeremy W.
    Milshteyn, Eugene
    Marco-Rius, Irene
    Ohliger, Michael
    Vigneron, Daniel B.
    Larson, Peder E. Z.
    MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (03) : 1087 - 1092