Surface hydrophobic MIL-100(Fe) MOFs to boost methane oxidation with nearly total selectivity to C1 oxygenates under mild conditions

被引:8
作者
Li, Wencui [1 ]
Li, Zhi [1 ]
Xie, Zean [2 ]
Zhang, Hang [2 ]
Song, Weiyu [1 ]
Liu, Baijun [1 ]
Zhao, Zhen [1 ,2 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
[2] Shenyang Normal Univ, Inst Catalysis Energy & Environm, Shenyang 110034, Peoples R China
基金
中国国家自然科学基金;
关键词
Direct conversion of methane; Metal -organic frameworks; Coordinatively unsaturated Fe(II) sites; C1; oxygenates; Catalysts; METAL-ORGANIC FRAMEWORKS; COORDINATIVELY UNSATURATED SITES; DIRECT CONVERSION; DIOXYGEN ACTIVATION; FE(II) SITES; CU; MONOOXYGENASE; CHEMISTRY; GRAPHENE; ETHANE;
D O I
10.1016/j.jcat.2023.115243
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct methane conversion into value-added liquid oxygenates is a holy-grail reaction. We modified MIL-100(Fe) MOFs materials with highly dispersed hydrophobic polydimethysiloxane nanoparticles to significantly enhance their water resistance. The C1 oxygenates demonstrated an impressive yield and selectivity of 83.13 mmol g cat. - 1 h- 1 and 100 %, respectively, while achieving a turnover frequency of 332.5 h-1 for oxygenates. The results of spectroscopy characterization and theoretical calculation demonstrate that, during the hydrophobic modification process of the catalyst surface, the loss of some ligands leads to the formation of coordination unsaturated active sites (Fe(II) CUS). The Fe(II) CUS active sites can efficiently catalyze the cleavage of H2O2 to produce Fe(IV) = O active species with high Lewis acidity, those promote homolytic dissociation of methane C-H bond with a low energy barrier. This study expands the application of hydrophilic MOFs materials with coordinatively unsaturated metal sites in the heterogeneous catalytic reactions of liquid phase.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Chemistry and applications of s-block metal-organic frameworks [J].
Alnaqbi, Mohamed A. ;
Alzamly, Ahmed ;
Ahmed, Salwa Hussein ;
Bakiro, Maram ;
Kegere, James ;
Nguyen, Ha L. .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (07) :3828-3854
[2]   Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol [J].
Barona, Melissa ;
Snurr, Randall Q. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (25) :28217-28231
[3]   Methane as raw material in synthetic chemistry: the final frontier [J].
Caballero, Ana ;
Perez, Pedro J. .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (23) :8809-8820
[4]  
Castelvecchi D, 2016, NATURE, V536, P14, DOI 10.1038/nature.2016.20342
[5]   Copper protein constructs for methane oxidation [J].
Chan, Sunney I. ;
Yu, Steve S. -F .
NATURE CATALYSIS, 2019, 2 (04) :286-287
[6]   High H2 adsorption in a microporous metal-organic framework with open metal sites [J].
Chen, BL ;
Ockwig, NW ;
Millward, AR ;
Contreras, DS ;
Yaghi, OM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (30) :4745-4749
[7]   Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms [J].
Cui, Xiaoju ;
Li, Haobo ;
Wang, Yan ;
Hu, Yuanli ;
Hua, Lei ;
Li, Haiyang ;
Han, Xiuwen ;
Liu, Qingfei ;
Yang, Fan ;
He, Limin ;
Chen, Xiaoqi ;
Li, Qingyun ;
Xiao, Jianping ;
Deng, Dehui ;
Bao, Xinhe .
CHEM, 2018, 4 (08) :1902-1910
[8]   Improving Water Stability of Metal-Organic Frameworks by a General Surface Hydrophobic Polymerization [J].
Ding, Meili ;
Jiang, Hai-Long .
CCS CHEMISTRY, 2021, 3 (08) :2740-2748
[9]   Homogeneous Functionalization of Methane [J].
Gunsalus, Niles Jensen ;
Koppaka, Anjaneyulu ;
Park, Sae Hume ;
Bischof, Steven M. ;
Hashiguchi, Brian G. ;
Periana, Roy A. .
CHEMICAL REVIEWS, 2017, 117 (13) :8521-8573
[10]   Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores [J].
Horcajada, Patricia ;
Surble, Suzy ;
Serre, Christian ;
Hong, Do-Young ;
Seo, You-Kyong ;
Chang, Jong-San ;
Greneche, Jean-Marc ;
Margiolaki, Irene ;
Ferey, Gerard .
CHEMICAL COMMUNICATIONS, 2007, (27) :2820-2822