Blockchain based federated learning for intrusion detection for Internet of Things

被引:7
|
作者
Sun, Nan [1 ]
Wang, Wei [2 ,3 ]
Tong, Yongxin [4 ]
Liu, Kexin [2 ,3 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] Zhongguancun Lab, Beijing 100094, Peoples R China
[4] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
intrusion detection; federated learning; new attacks discovering; blockchain;
D O I
10.1007/s11704-023-3026-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In Internet of Things (IoT), data sharing among different devices can improve manufacture efficiency and reduce workload, and yet make the network systems be more vulnerable to various intrusion attacks. There has been realistic demand to develop an efficient intrusion detection algorithm for connected devices. Most of existing intrusion detection methods are trained in a centralized manner and are incapable to identify new unlabeled attack types. In this paper, a distributed federated intrusion detection method is proposed, utilizing the information contained in the labeled data as the prior knowledge to discover new unlabeled attack types. Besides, the blockchain technique is introduced in the federated learning process for the consensus of the entire framework. Experimental results are provided to show that our approach can identify the malicious entities, while outperforming the existing methods in discovering new intrusion attack types.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Blockchain based federated learning for intrusion detection for Internet of Things
    Nan Sun
    Wei Wang
    Yongxin Tong
    Kexin Liu
    Frontiers of Computer Science, 2024, 18
  • [2] Federated learning-based intrusion detection system for Internet of Things
    Najet Hamdi
    International Journal of Information Security, 2023, 22 : 1937 - 1948
  • [3] Federated learning-based intrusion detection system for Internet of Things
    Hamdi, Najet
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1937 - 1948
  • [4] Semisupervised Federated-Learning-Based Intrusion Detection Method for Internet of Things
    Zhao, Ruijie
    Wang, Yijun
    Xue, Zhi
    Ohtsuki, Tomoaki
    Adebisi, Bamidele
    Gui, Guan
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 8645 - 8657
  • [5] Utilizing Blockchain for Distributed Machine Learning based Intrusion Detection in Internet of Things
    Cheema, Muhammad Asaad
    Qureshi, Hassaan Khaliq
    Chrysostomou, Chrysostomos
    Lestas, Marios
    16TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2020), 2020, : 429 - 435
  • [6] A federated learning-based zero trust intrusion detection system for Internet of Things
    Javeed, Danish
    Saeed, Muhammad Shahid
    Adil, Muhammad
    Kumar, Prabhat
    Jolfaei, Alireza
    AD HOC NETWORKS, 2024, 162
  • [7] Intrusion detection for industrial internet of things based on federated learning and self-attention
    Wang J.
    Wang H.-L.
    Huang B.-W.
    Fu Q.
    Liu J.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (11): : 3229 - 3237
  • [8] Intelligent Intrusion Detection Based on Federated Learning for Edge-Assisted Internet of Things
    Man, Dapeng
    Zeng, Fanyi
    Yang, Wu
    Yu, Miao
    Lv, Jiguang
    Wang, Yijing
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021 (2021)
  • [9] Internet of Things intrusion Detection: Centralized, On-Device, or Federated Learning?
    Rahman, Sawsan Abdul
    Tout, Hanine
    Talhi, Chamseddine
    Mourad, Azzam
    IEEE NETWORK, 2020, 34 (06): : 310 - 317
  • [10] Evaluating Federated Learning for intrusion detection in Internet of Things: Review and challenges
    Campos, Enrique Marmol
    Saura, Pablo Fernandez
    Gonzalez-Vidal, Aurora
    Hernandez-Ramos, Jose L.
    Bernabe, Jorge Bernal
    Baldini, Gianmarco
    Skarmeta, Antonio
    COMPUTER NETWORKS, 2022, 203