Boole-Dunkl polynomials and generalizations

被引:4
作者
Asensi, Alejandro Gil [1 ]
Labarga, Edgar [1 ]
Ceniceros, Judit Minguez [1 ]
Varona, Juan Luis [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Comp, Logrono 26006, Spain
关键词
Appell-Dunkl sequences; Discrete Appell-Dunkl sequences; Euler-Dunkl polynomials; Boole polynomials; Boole-Dunkl polynomials; Dunkl transform; Stirling-Dunkl numbers; BERNOULLI-DUNKL; TRANSFORM; MULTIPLIER; SEQUENCES; OPERATORS; SPACES;
D O I
10.1007/s13398-023-01518-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Appell sequences of polynomials can be extended to the Dunkl context replacing the ordinary derivative by the Dunkl operator on the real line, and the exponential function by the Dunkl kernel. In a similar way, discrete Appell sequences can be extended to the Dunkl context; here, the role of the ordinary translation is played by the Dunkl translation, which is a much more intricate operator. Some sequences as the falling factorials or the Bernoulli polynomials of the second kind have already been extended and investigated in the mathematical literature. In this paper, we study the discrete Appell version of the Euler polynomials, usually known as Euler polynomials of the second kind or Boole polynomials. We show how to define the Dunkl extension of these polynomials (and some of their generalizations), and prove some relevant properties and relations with other polynomials and with Stirling-Dunkl numbers.
引用
收藏
页数:18
相关论文
共 48 条
[1]   The spectrum of the right inverse of the Dunkl operator [J].
Abreu, Luis Daniel ;
Ciaurri, Oscar ;
Luis Varona, Juan .
REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02) :471-483
[2]  
ALSALAM WA, 1990, NATO ADV SCI I C-MAT, V294, P1
[3]  
Andersen NB, 2005, INT MATH RES NOTICES, V2005, P1817
[4]   Appell-Dunkl sequences and Hurwitz-Dunkl zeta functions [J].
Asensi, Alejandro Gil ;
Varona, Juan L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (01)
[5]  
Babini J., 1935, REV MAT HISP AM, V10, P23
[6]   The multiplier of the interval [-1,1] for the Dunkl transform on the real line [J].
Betancor, Jorge J. ;
Ciaurri, Oscar ;
Varona, Juan L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (01) :327-336
[7]  
Boas R. P., 1964, Polynomial expansions of analytic functions, DOI 10.1007/978-3-662-25170-6
[8]  
Brenke W. C., 1945, Am. Math. Mon., V52, P297
[9]  
Carlitz L., 1961, Scripta Math., V25, P323
[10]   Some Appell-Dunkl Sequences [J].
Ceniceros, Judit Minguez .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)