Truncated Euler-Maruyama method for stochastic differential equations driven by fractional Brownian motion with super-linear drift coefficient

被引:3
作者
He, Jie [1 ]
Gao, Shuaibin [2 ]
Zhan, Weijun [3 ]
Guo, Qian [2 ,4 ]
机构
[1] Jiangsu Second Normal Univ, Dept Math, Nanjing, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[3] Anhui Normal Univ, Dept Math, Wuhu, Peoples R China
[4] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
Truncated Euler-Maruyama; stochastic differential equation; fractional Brownian motion; convergence rate; SDES DRIVEN; CONVERGENCE; STABILITY; SCHEME;
D O I
10.1080/00207160.2023.2266757
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a truncated Euler-Maruyama scheme for stochastic differential equations driven by fractional Brownian motion with super-linear drift coefficient. Meanwhile, the convergence rate of the numerical method is established. Numerical example is demonstrated to verify the theoretical results.
引用
收藏
页码:2184 / 2195
页数:12
相关论文
共 23 条
[1]  
Biagini F, 2008, PROBAB APPL SER, P1
[2]   A Milstein-type scheme without Levy area terms for SDEs driven by fractional Brownian motion [J].
Deya, A. ;
Neuenkirch, A. ;
Tindel, S. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (02) :518-550
[3]   Stochastic calculus for fractional Brownian motion - I. Theory [J].
Duncan, TE ;
Hu, YZ ;
Pasik-Duncan, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :582-612
[4]   Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion [J].
Garrido-Atienza, Maria J. ;
Kloeden, Peter E. ;
Neuenkirch, Andreas .
APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 60 (02) :151-172
[5]   The truncated Euler-Maruyama method for stochastic differential delay equations [J].
Guo, Qian ;
Mao, Xuerong ;
Yue, Rongxian .
NUMERICAL ALGORITHMS, 2018, 78 (02) :599-624
[6]   The truncated Milstein method for stochastic differential equations with commutative noise [J].
Guo, Qian ;
Liu, Wei ;
Mao, Xuerong ;
Yue, Rongxian .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 338 :298-310
[7]   Optimal strong convergence rate of a backward Euler type scheme for the Cox-Ingersoll-Ross model driven by fractional Brownian motion [J].
Hong, Jialin ;
Huang, Chuying ;
Kamrani, Minoo ;
Wang, Xu .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (05) :2675-2692
[8]   Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations [J].
Hu, Liangjian ;
Li, Xiaoyue ;
Mao, Xuerong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 :274-289
[9]   A singular stochastic differential equation driven by fractional Brownian motion [J].
Hu, Yaozhong ;
Nualart, David ;
Song, Xiaoming .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (14) :2075-2085
[10]   CRANK-NICOLSON SCHEME FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTIONS [J].
Hu, Yaozhong ;
Liu, Yanghui ;
Nualart, David .
ANNALS OF APPLIED PROBABILITY, 2021, 31 (01) :39-83