Efficiency improvement of thin film solar cell using silver pyramids array and antireflective layer

被引:10
作者
Mohsin, Abu S. M. [1 ]
Mondal, Sujoy [1 ]
Mobashera, Monica [1 ]
Malik, Afrida [1 ]
Islam, Maliha [1 ]
Rubaiat, Maisha [1 ]
机构
[1] Brac Univ, Dept Elect & Elect Engn, Nanotechnol IoT & Appl Machine Learning Res Grp, 66 Mohakhali, Dhaka, Bangladesh
关键词
Silver pyramid array; Thin-film solar cell; Light trapping; Nanoparticle array; Antireflective layer; and Absorption efficiency; NANOSTRUCTURES; LITHOGRAPHY; FABRICATION; ABSORPTION; DESIGN;
D O I
10.1016/j.heliyon.2023.e16749
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, plasmonics has been widely employed to improve light trapping in solar cells. Silver nanospheres have been used in several research works to improve the capability of solar absorption. In this paper, we use silver pyramid-shaped nanoparticles, a noble plasmonic nanoparticle, inside thin-film silicon and InP solar cells to increase light absorption compared to previously published topologies. The proposed structure consists of a TiO2 pyramid structure placed at the top of the surface working as an anti-reflective layer, silicon/indium phosphate as an absorption layer, silver pyramid-shaped nanoparticles incorporated inside the absorption layer, and an aluminum reflecting layer at the bottom. In this research, we used finite difference time domain (FDTD) simulation to model the thin-film solar cell (TFSC). Optimizing the shape and placement of the silver pyramids, we have achieved an efficiency of 17.08% and 18.58% using silicon and InP as the absorbing layers respectively, which is significantly better than previously reported studies. The open-circuit voltages are 0.58 V and 0.92 V respectively, which is the highest among other configurations. To conclude, the findings of this study laid the foundation to create an efficient thin-film solar cell utilizing the light-trapping mechanism of noble plasmonic nanoparticles.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Surface plasmon resonance in gold nanoparticles: a review
    Amendola, Vincenzo
    Pilot, Roberto
    Frasconi, Marco
    Marago, Onofrio M.
    Iati, Maria Antonia
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (20)
  • [2] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
  • [3] Enhanced light extraction efficiency from AlGaInP thin-film light-emitting diodes with photonic crystals
    Bergenek, K.
    Wiesmann, Ch.
    Wirth, R.
    O'Faolain, L.
    Linder, N.
    Streubel, K.
    Krauss, T. F.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (04)
  • [4] A morphological and electronic study of ultrathin rear passivated Cu(In,Ga)Se2 solar cells
    Bose, S.
    Cunha, J. M. V.
    Borme, J.
    Chen, W. C.
    Nilsson, N. S.
    Teixeira, J. P.
    Gaspar, J.
    Leitao, J. P.
    Edoff, M.
    Fernandes, P. A.
    Salome, P. M. P.
    [J]. THIN SOLID FILMS, 2019, 671 : 77 - 84
  • [5] Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793
  • [6] Plasmonic Dye-Sensitized Solar Cells
    Ding, I-Kang
    Zhu, Jia
    Cai, Wenshan
    Moon, Soo-Jin
    Cai, Ning
    Wang, Peng
    Zakeeruddin, Shaik M.
    Graetzel, Michael
    Brongersma, Mark L.
    Cui, Yi
    McGehee, Michael D.
    [J]. ADVANCED ENERGY MATERIALS, 2011, 1 (01) : 52 - 57
  • [7] The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors
    Disney, Claire E. R.
    Pillai, Supriya
    Green, Martin A.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Design, optimization and fabrication of 2D photonic crystals for solar cells
    Dominguez, S.
    Cornago, I.
    Garcia, O.
    Ezquer, M.
    Rodriguez, M. J.
    Lagunas, A. R.
    Perez-Conde, J.
    Bravo, J.
    [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2013, 11 (01) : 29 - 36
  • [9] Gassenbauer Y, 2013, IEEE J PHOTOVOLT, V3, P125, DOI 10.1109/JPHOTOV.2012.2211338
  • [10] Gee J., 2017, ENERGYSAGE, V19