Fast ionic PEO-NaCF3SO3-Na3Zr2Si2P3O12 membranes for all-solid-state energy storage devices

被引:3
作者
Neha, Anshuman [1 ]
Dalvi, Anshuman [1 ]
机构
[1] BITS Pilani, Dept Phys, Pilani Campus, Pilani 333031, Rajasthan, India
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2023年 / 289卷
关键词
Ionic Transport; Composite solid polymer electrolyte; Supercapacitors; NASICON; Electrochemical Impedance Spectroscopy; Cyclic voltammetry; ELECTRICAL-PROPERTIES; POLYMER ELECTROLYTE; CONDUCTIVITY; PERFORMANCE; TRANSPORT; BATTERY; LITHIUM; NA;
D O I
10.1016/j.mseb.2022.116252
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present investigation delves into the ionic transport studies in Na+ ion-based composite solid polymer electrolytes (CSPEs) reinforced with nano crystallites of Na3Zr2Si2P3O12 (NZSP) and reveals their possible application as solid-state electrolyte, particularly in supercapacitors. These membranes have been prepared by solution casting. Highest conductivity of -10-4 omega-1cm-1 is achieved for a typical composition 10NaCF3SO3-90 (0.40PEO-0.60NZSP) at 40 degrees C. For the samples with large NZSP content (>= 54 wt%), polymer (PEO) melting is hardly seen to be affecting the conductivity behaviour. The content of NZSP also improves electrochemical stability window. Further, the 'liquid-free' all-solid-state supercapacitors have been prepared by hot roll lami-nation using the hybrid CSPEs as electrolyte and activated charcoal electrodes (surface area - 1000m2g- 1).The NZSP content in the polymer matrix influences supercapacitor performance. The supercapacitors are stable with CV and galvanostatic charge-discharge cycling, and exhibit a specific capacitance of -150 Fg-1 at a current density of -2Ag-1 and 1 V operating voltage.
引用
收藏
页数:10
相关论文
共 40 条
  • [1] Physical and ionic transport studies on poly(ethylene oxide)-NaNO3 polymer electrolyte system
    Anantha, PS
    Hariharan, K
    [J]. SOLID STATE IONICS, 2005, 176 (1-2) : 155 - 162
  • [2] Enhanced ionic conduction in NaNO3 by dispersed oxide inclusions
    Anantha, PS
    Hariharan, K
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2003, 64 (07) : 1131 - 1137
  • [3] AC conductivity studies of polyethylene oxide-garnet-type Li7La3Zr2O12 hybrid composite solid polymer electrolyte films
    Bashiri, Parisa
    Rao, T. Prasada
    Naik, Vaman M.
    Nazri, G. A.
    Naik, Ratna
    [J]. SOLID STATE IONICS, 2019, 343
  • [4] Review-Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid
    Boaretto, Nicola
    Meabe, Leire
    Martinez-Ibanez, Maria
    Armand, Michel
    Zhang, Heng
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (07)
  • [5] Preparation and conductivity of the composite polymer electrolytes based on poly [bis(methoxyethoxyethoxy)phosphazene], LiClO4 and α-Al2O3
    Chen-Yang, YW
    Chen, HC
    Lin, FJ
    Liao, CW
    Chen, TL
    [J]. SOLID STATE IONICS, 2003, 156 (03) : 383 - 392
  • [6] Gel Polymer Electrolytes for Electrochemical Energy Storage
    Cheng, Xunliang
    Pan, Jian
    Zhao, Yang
    Liao, Meng
    Peng, Huisheng
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (07)
  • [7] Effects of ceramic fillers on the electrical properties of (PEO)16LiClO4 electrolytes
    Choi, BK
    Kim, YW
    Shin, KH
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (02) : 357 - 360
  • [8] Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes
    Choudhary, Shobhna
    Sengwa, R. J.
    [J]. ELECTROCHIMICA ACTA, 2017, 247 : 924 - 941
  • [9] Stable Na-ion supercapacitor under non-ambient conditions using maricite-NaMnPO4 nanoparticles
    Chowdhury, Ananya
    Biswas, Sudipta
    Dhar, Abyaya
    Burada, Poornachandra Sekhar
    Chandra, Amreesh
    [J]. JOURNAL OF POWER SOURCES, 2021, 516
  • [10] A Practical Beginner's Guide to Cyclic Voltammetry
    Elgrishi, Noemie
    Rountree, Kelley J.
    McCarthy, Brian D.
    Rountree, Eric S.
    Eisenhart, Thomas T.
    Dempsey, Jillian L.
    [J]. JOURNAL OF CHEMICAL EDUCATION, 2018, 95 (02) : 197 - 206