Time series big data: a survey on data stream frameworks, analysis and algorithms

被引:16
作者
Almeida, Ana [1 ,2 ]
Bras, Susana [2 ,3 ]
Sargento, Susana [1 ,2 ]
Pinto, Filipe Cabral [1 ,4 ]
机构
[1] Inst Telecomunicacoes, Aveiro, Portugal
[2] Univ Aveiro, Dept Eletron Telecomunicacoes & Informat, Aveiro, Portugal
[3] Univ Aveiro, IEETA, DETI, LASI, Aveiro, Portugal
[4] Altice Labs, Aveiro, Portugal
基金
英国科研创新办公室;
关键词
Big data; Time series; Stream processing engines; Forecasting; Anomaly detection; Machine learning; ANOMALY DETECTION; NETWORK;
D O I
10.1186/s40537-023-00760-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Big data has a substantial role nowadays, and its importance has significantly increased over the last decade. Big data's biggest advantages are providing knowledge, supporting the decision-making process, and improving the use of resources, services, and infrastructures. The potential of big data increases when we apply it in real-time by providing real-time analysis, predictions, and forecasts, among many other applications. Our goal with this article is to provide a viewpoint on how to build a system capable of processing big data in real-time, performing analysis, and applying algorithms. A system should be designed to handle vast amounts of data and provide valuable knowledge through analysis and algorithms. This article explores the current approaches and how they can be used for the real-time operations and predictions.
引用
收藏
页数:32
相关论文
共 50 条
[21]   Mining and Forecasting of Big Time-series Data [J].
Sakurai, Yasushi ;
Matsubara, Yasuko ;
Faloutsos, Christos .
SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, :919-922
[22]   Big data for time series and trend analysis of poly waste management in India [J].
Velvizhi, V. ;
Billewar, Satish R. ;
Londhe, Gaurav ;
Kshirsagar, Praveen ;
Kumar, Neeraj .
MATERIALS TODAY-PROCEEDINGS, 2021, 37 :2607-2611
[23]   Towards an analysis of the epistemic frameworks of big data [J].
Becerra, Gaston ;
Castorina, Jose Antonio .
CINTA DE MOEBIO, 2023, 76 :50-63
[24]   Time Series Analysis of Oceanographic Data Using Clustering Algorithms [J].
Kumar, D. J. Santosh ;
Vighneshwar, S. P. ;
Mishra, Tusar Kanti ;
Jampana, Satya, V .
COMPUTER COMMUNICATION, NETWORKING AND INTERNET SECURITY, 2017, 5 :245-252
[25]   Energy Information Analysis Using Data Algorithms based on Big Data platform [J].
Kang, Dongjun ;
Kim, SeungHwan ;
Lee, Tacklim ;
Hwang, Junyeon ;
Lee, Sanghoon ;
Jang, SeongMan ;
Park, Sehyun .
PROCEEDINGS OF 2016 IEEE 18TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 14TH INTERNATIONAL CONFERENCE ON SMART CITY; IEEE 2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2016, :1530-1531
[26]   A Survey on Job Scheduling Algorithms in Big Data Processing [J].
Gautam, Jyoti V. ;
Prajapati, Harshadkumar B. ;
Dabhi, Vipul K. ;
Chaudhary, Sanjay .
2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES, 2015,
[27]   A Survey of Bitmap Index Compression Algorithms for Big Data [J].
Chen, Zhen ;
Wen, Yuhao ;
Cao, Junwei ;
Zheng, Wenxun ;
Chang, Jiahui ;
Wu, Yinjun ;
Ma, Ge ;
Hakmaoui, Mourad ;
Peng, Guodong .
TSINGHUA SCIENCE AND TECHNOLOGY, 2015, 20 (01) :100-115
[28]   Streaming feature selection algorithms for big data: A survey [J].
AlNuaimi, Noura ;
Masud, Mohammad Mehedy ;
Serhani, Mohamed Adel ;
Zaki, Nazar .
APPLIED COMPUTING AND INFORMATICS, 2022, 18 (1/2) :113-135
[29]   A Nearest Neighbours-Based Algorithm for Big Time Series Data Forecasting [J].
Talavera-Llames, Ricardo L. ;
Perez-Chacon, Ruben ;
Martinez-Ballesteros, Maria ;
Troncoso, Alicia ;
Martinez-Alvarez, Francisco .
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2016, 9648 :174-185
[30]   A Survey of Bitmap Index Compression Algorithms for Big Data [J].
Zhen Chen ;
Yuhao Wen ;
Junwei Cao ;
Wenxun Zheng ;
Jiahui Chang ;
Yinjun Wu ;
Ge Ma ;
Mourad Hakmaoui ;
Guodong Peng .
Tsinghua Science and Technology, 2015, 20 (01) :100-115