Time series big data: a survey on data stream frameworks, analysis and algorithms

被引:16
作者
Almeida, Ana [1 ,2 ]
Bras, Susana [2 ,3 ]
Sargento, Susana [1 ,2 ]
Pinto, Filipe Cabral [1 ,4 ]
机构
[1] Inst Telecomunicacoes, Aveiro, Portugal
[2] Univ Aveiro, Dept Eletron Telecomunicacoes & Informat, Aveiro, Portugal
[3] Univ Aveiro, IEETA, DETI, LASI, Aveiro, Portugal
[4] Altice Labs, Aveiro, Portugal
基金
英国科研创新办公室;
关键词
Big data; Time series; Stream processing engines; Forecasting; Anomaly detection; Machine learning; ANOMALY DETECTION; NETWORK;
D O I
10.1186/s40537-023-00760-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Big data has a substantial role nowadays, and its importance has significantly increased over the last decade. Big data's biggest advantages are providing knowledge, supporting the decision-making process, and improving the use of resources, services, and infrastructures. The potential of big data increases when we apply it in real-time by providing real-time analysis, predictions, and forecasts, among many other applications. Our goal with this article is to provide a viewpoint on how to build a system capable of processing big data in real-time, performing analysis, and applying algorithms. A system should be designed to handle vast amounts of data and provide valuable knowledge through analysis and algorithms. This article explores the current approaches and how they can be used for the real-time operations and predictions.
引用
收藏
页数:32
相关论文
共 50 条
[1]   Time series big data: a survey on data stream frameworks, analysis and algorithms [J].
Ana Almeida ;
Susana Brás ;
Susana Sargento ;
Filipe Cabral Pinto .
Journal of Big Data, 10
[2]   Big Data Security Survey on Frameworks and Algorithms [J].
Chandra, Sudipta ;
Ray, Soumya ;
Goswami, R. T. .
2017 7TH IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2017, :48-54
[3]   Big Data Security in Healthcare Survey on Frameworks and Algorithms [J].
Chandra, Sudipta ;
Ray, Soumya ;
Goswami, R. T. .
2017 7TH IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2017, :89-94
[4]   A survey on data stream, big data and real-time [J].
Gomes E.H.A. ;
Plentz P.D.M. ;
De Rolt C.R. ;
Dantas M.A.R. .
International Journal of Networking and Virtual Organisations, 2019, 20 (02) :143-167
[5]   Proposed Algorithms for Effective Real Time Stream Analysis in Big Data [J].
Agnihotri, Nishant ;
Sharma, Aman Kumar .
2015 THIRD INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2015, :348-352
[6]   Time-Series Big Data Stream Evaluation [J].
Mursanto, Petrus ;
Wibisono, Ari ;
Bayu, Wendy D. W. T. ;
Ahli, Valian Fil ;
Rizki, May Iffah ;
Hasani, Lintang Matahari ;
Adibah, Jihan .
2020 5TH INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS 2020), 2020, :43-47
[7]   Anomaly Detection for Time Series Data Stream [J].
Wang, Qifan ;
Yan, Bo ;
Su, Hongyi ;
Zheng, Hong .
2021 IEEE 6TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (ICBDA 2021), 2021, :118-122
[8]   Time Series Data Cleaning: A Survey [J].
Wang, Xi ;
Wang, Chen .
IEEE ACCESS, 2020, 8 :1866-1881
[9]   A Survey on Big Data for Network Traffic Monitoring and Analysis [J].
D'Alconzo, Alessandro ;
Drago, Idilio ;
Morichetta, Andrea ;
Mellia, Marco ;
Casas, Pedro .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2019, 16 (03) :800-813
[10]   An experimental survey on big data frameworks [J].
Inoubli, Wissem ;
Aridhi, Sabeur ;
Mezni, Haithem ;
Maddouri, Mondher ;
Nguifo, Engelbert Mephu .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 86 :546-564