HMC Techniques for Reducing the Uncertainty of Gas-Lifted Oil Field Model

被引:0
作者
Jayamanne, Kushila [1 ]
Lie, Bernt [1 ]
机构
[1] Univ South Eastern Norway, Dept Elect Engn IT & Cybernet, N-3918 Porsgrunn, Norway
关键词
Parameter estimation; Markov Chain Monte Carlo; Model uncertainty; Hamiltonian Monte Carlo; No-U-Turn Sampler;
D O I
10.4173/mic.2023.1.2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Parametric model uncertainties could have a high impact on the predictive capabilities of a model. When process measurements become available, these uncertainties may be reduced using parameter estimation techniques. Estimation techniques founded on the Bayesian framework in particular are powerful: they produce a probability density function (PDF) of the estimated parameter rather than a single point estimate.In this paper, we consider a gas lifted oil field model whose predictions are highly sensitive to un-certainty in its parameters. We apply Markov Chain Monte Carlo (MCMC) methods, which follow the Bayesian paradigm, to estimate these parameters, and thereby reduce the uncertainty in the model pre-dictions; two different algorithms, Hamiltonian Monte Carlo (HMC) and No-U-Turn Sampler (NUTS), are used. The probabilistic programming language (PPL), Turing in Julia is used for implementation. Monte Carlo simulations and/or data retrodiction is performed prior to and post parameter estimation, to evaluate the uncertainty in model predictions; the outcomes are compared to determine the efficacy of parameter estimation. Results show that the computed posterior distributions yield model predictions that are in close agreement with the observations, and that model uncertainty is effectively reduced.
引用
收藏
页码:17 / 29
页数:13
相关论文
共 30 条
[1]   Parameter Estimation for a Gas Lifting Oil Well Model Using Bayes' Rule and the MetropolisHastings Algorithm [J].
Ban, Zhe ;
Ghaderi, Ali ;
Janatian, Nima ;
Pfeiffer, Carlos .
MODELING IDENTIFICATION AND CONTROL, 2022, 43 (02) :39-53
[2]  
Betancourt M, 2018, Arxiv, DOI [arXiv:1701.02434, DOI 10.48550/ARXIV.1701.02434, 10.48550/arXiv.1701.02434]
[3]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[4]  
Brooks S, 2011, CH CRC HANDB MOD STA, pXIX
[5]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[6]  
Dhingra NK, 2014, IEEE DECIS CONTR P, P4039, DOI 10.1109/CDC.2014.7040017
[7]  
Dixit VK, 2022, J OPEN SOURCE SOFTW, V7, P4561, DOI [10.21105/joss.04561, 10.21105/joss.04561, DOI 10.21105/JOSS.04561]
[8]   HYBRID MONTE-CARLO [J].
DUANE, S ;
KENNEDY, AD ;
PENDLETON, BJ ;
ROWETH, D .
PHYSICS LETTERS B, 1987, 195 (02) :216-222
[9]  
Ge H, 2018, PR MACH LEARN RES, V84
[10]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741