Derivation of the Fractional Fokker-Planck Equation for Stable Levy with Financial Applications

被引:1
|
作者
Aljethi, Reem Abdullah [1 ,2 ]
Kilicman, Adem [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Dept Math, Riyadh 11564, Saudi Arabia
[2] Univ Putra Malaysia, Dept Math & Stat, Serdang 43400, Selangor, Malaysia
关键词
Levy stable; Fokker-Planck equation; fractional differential equations; entropy; DIFFERENTIAL-EQUATIONS; DIFFUSION; DISPERSION;
D O I
10.3390/math11051102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to propose a generalized fractional Fokker-Planck equation based on a stable Levy stochastic process. To develop the general fractional equation, we will use the Levy process rather than the Brownian motion. Due to the Levy process, this fractional equation can provide a better description of heavy tails and skewness. The analytical solution is chosen to solve the fractional equation and is expressed using the H-function to demonstrate the indicator entropy production rate. We model market data using a stable distribution to demonstrate the relationships between the tails and the new fractional Fokker-Planck model, as well as develop an R code that can be used to draw figures from real data.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [2] Levy stable distribution and space-fractional Fokker-Planck type equation
    Duan, Jun-Sheng
    Chaolu, Temuer
    Wang, Zhong
    Fu, Shou-Zhong
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 17 - 20
  • [3] On Derivation of Fokker-Planck Equation
    Tanatarov, L. V.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2013, 35 (01): : 95 - 111
  • [4] Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments
    Srokowski, Tomasz
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [5] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [6] Fractional Fokker-Planck Equation
    Baumann, Gerd
    Stenger, Frank
    MATHEMATICS, 2017, 5 (01):
  • [7] FRACTIONAL FOKKER-PLANCK EQUATION
    Tristani, Isabelle
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (05) : 1243 - 1260
  • [8] DERIVATION AND APPLICATION OF FOKKER-PLANCK EQUATION
    CAUGHEY, TK
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1962, 34 (12): : 2000 - &
  • [9] SIMPLIFIED DERIVATION OF THE FOKKER-PLANCK EQUATION
    SIEGMAN, AE
    AMERICAN JOURNAL OF PHYSICS, 1979, 47 (06) : 545 - 547
  • [10] ON THE DERIVATION OF THE FOKKER-PLANCK EQUATION FOR A PLASMA
    TEMKO, SV
    SOVIET PHYSICS JETP-USSR, 1957, 4 (06): : 898 - 903