A single-cell time-lapse of mouse prenatal development from gastrula to birth

被引:21
|
作者
Qiu, Chengxiang [1 ]
Martin, Beth K. [1 ]
Welsh, Ian C. [2 ]
Daza, Riza M. [1 ]
Le, Truc-Mai [3 ]
Huang, Xingfan [1 ,4 ]
Nichols, Eva K. [1 ]
Taylor, Megan L. [1 ,3 ]
Fulton, Olivia [1 ]
O'Day, Diana R. [3 ]
Gomes, Anne Roshella [3 ]
Ilcisin, Saskia [3 ]
Srivatsan, Sanjay [1 ,5 ]
Deng, Xinxian [6 ]
Disteche, Christine M. [6 ,7 ]
Noble, William Stafford [1 ,4 ]
Hamazaki, Nobuhiko [1 ,8 ]
Moens, Cecilia B. [9 ]
Kimelman, David [1 ,10 ]
Cao, Junyue [11 ]
Schier, Alexander F. [12 ,13 ]
Spielmann, Malte [14 ,15 ,16 ,17 ]
Murray, Stephen A. [2 ]
Trapnell, Cole [1 ,3 ,13 ,18 ]
Shendure, Jay [1 ,3 ,8 ,13 ,18 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Jackson Lab, Bar Harbor, ME USA
[3] Brotman Baty Inst Precis Med, Seattle, WA 98195 USA
[4] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA USA
[5] Univ Washington, Med Scientist Training Program, Seattle, WA USA
[6] Univ Washington, Dept Lab Med & Pathol, Seattle, WA USA
[7] Univ Washington, Dept Med, Seattle, WA USA
[8] Howard Hughes Med Inst, Seattle, WA 98195 USA
[9] Fred Hutchinson Canc Ctr, Div Basic Sci, Seattle, WA USA
[10] Univ Washington, Dept Biochem, Seattle, WA USA
[11] Rockefeller Univ, Lab Single Cell Genom & Populat Dynam, New York, NY USA
[12] Univ Basel, Biozentrum, Basel, Switzerland
[13] Allen Discovery Ctr Cell Lineage Tracing, Seattle, WA 98109 USA
[14] Max Planck Inst Mol Genet, Berlin, Germany
[15] Univ Lubeck, Univ Hosp Schleswig Holstein, Inst Human Genet, Kiel, Germany
[16] Univ Kiel, Kiel, Germany
[17] DZHK German Ctr Cardiovasc Res, Partner Site Hamburg, Kiel, Germany
[18] Seattle Hub Synthet Biol, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
REGULATORY NETWORK; SPECIFICATION; MORPHOGENESIS; LINEAGE; HETEROGENEITY; POPULATION; EXPRESSION; ORGANIZER; DYNAMICS; NEMATODE;
D O I
10.1038/s41586-024-07069-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb. Single-cell transcriptome profiling of mouse embryos and newborn pups is combined with previously published data to construct a tree of cell-type relationships tracing development from zygote to birth.
引用
收藏
页码:1084 / 1093
页数:39
相关论文
共 50 条
  • [1] IMAGING MOUSE DEVELOPMENT WITH CONFOCAL TIME-LAPSE MICROSCOPY
    Nowotschin, Sonja
    Ferrer-Vaquer, Anna
    Hadjantonakis, Anna-Katerina
    GUIDE TO TECHNIQUES IN MOUSE DEVELOPMENT, PT A: MICE, EMBRYOS, AND CELLS, 2ND EDITION, 2010, 476 : 351 - 377
  • [2] Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications
    Allard, Paige
    Papazotos, Fotini
    Potvin-Trottier, Laurent
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [3] Time-lapse electrical recordings of single neurons from the mouse neocortex
    Cohen, Lior
    Koffman, Noa
    Meiri, Hanoch
    Yarom, Yosef
    Lampl, Ilan
    Mizrahi, Adi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (14) : 5665 - 5670
  • [4] Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis
    Concha, ML
    Adams, RJ
    DEVELOPMENT, 1998, 125 (06): : 983 - 994
  • [5] DropSOAC: Stabilizing Microfluidic Drops for Time-Lapse Quantification of Single-Cell Bacterial Physiology
    Pratt, Shawna L.
    Zath, Geoffrey K.
    Akiyama, Tatsuya
    Williamson, Kerry S.
    Franklin, Michael J.
    Chang, Connie B.
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [6] Single-cell time-lapse analysis of depletion of the universally conserved essential protein YgjD
    Bergmiller, Tobias
    Pena-Miller, Rafael
    Boehm, Alexander
    Ackermann, Martin
    BMC MICROBIOLOGY, 2011, 11
  • [7] CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings
    Blanchoud, Simon
    Nicolas, Damien
    Zoller, Benjamin
    Tidin, Onur
    Naef, Felix
    METHODS, 2015, 85 : 3 - 11
  • [8] Challenges of analysing stochastic gene expression in bacteria using single-cell time-lapse experiments
    Hardo, Georgeos
    Bakshi, Somenath
    BIOCHEMISTRY: ONE MOLECULE AT A TIME, 2021, 65 (01): : 67 - 79
  • [9] Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment
    Moussy, Alice
    Cosette, Jeremie
    Parmentier, Romuald
    da Silva, Cindy
    Corre, Guillaume
    Richard, Angelique
    Gandrillon, Olivier
    Stockholm, Daniel
    Paldi, Andras
    PLOS BIOLOGY, 2017, 15 (07)
  • [10] Isoniazid Killing of Mycobacterium smegmatis NADH Pyrophosphatase Mutant at Single-Cell Level using Microfluidics and Time-Lapse Microscopy
    Elitas, Meltem
    SCIENTIFIC REPORTS, 2017, 7