A brief history of artificial intelligence embryo selection: from black-box to glass-box

被引:20
作者
Lee, Tammy [1 ,2 ]
Natalwala, Jay [1 ]
Chapple, Vincent [1 ]
Liu, Yanhe [1 ,2 ,3 ,4 ]
机构
[1] Joondalup Private Hosp, Fertil North, Suite 30,Level 2,60 Shenton Ave, Joondalup, WA 6027, Australia
[2] Univ Western Australia, Sch Human Sci, Crawley, WA, Australia
[3] Bond Univ, Fac Hlth Sci & Med, Robina, Qld, Australia
[4] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia
关键词
embryo selection; time-lapse videography; artificial intelligence; black-box; glass-box; interpretability; subjectivity; machine learning; deep learning; explainability; FETAL HEART PREGNANCY; TIME-LAPSE INCUBATION; PREDICTIVE TOOL; STATIC IMAGES; IMPLANTATION; MODEL; MORPHOKINETICS; CLASSIFICATION;
D O I
10.1093/humrep/dead254
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
With the exponential growth of computing power and accumulation of embryo image data in recent years, artificial intelligence (AI) is starting to be utilized in embryo selection in IVF. Amongst different AI technologies, machine learning (ML) has the potential to reduce operator-related subjectivity in embryo selection while saving labor time on this task. However, as modern deep learning (DL) techniques, a subcategory of ML, are increasingly used, its integrated black-box attracts growing concern owing to the well-recognized issues regarding lack of interpretability. Currently, there is a lack of randomized controlled trials to confirm the effectiveness of such black-box models. Recently, emerging evidence has shown underperformance of black-box models compared to the more interpretable traditional ML models in embryo selection. Meanwhile, glass-box AI, such as interpretable ML, is being increasingly promoted across a wide range of fields and is supported by its ethical advantages and technical feasibility. In this review, we propose a novel classification system for traditional and AI-driven systems from an embryology standpoint, defining different morphology-based selection approaches with an emphasis on subjectivity, explainability, and interpretability. Graphical Abstract A proposed classification system for artificial intelligence embryo selection models with different subjectivity, interpretability, and explainability.
引用
收藏
页码:285 / 292
页数:8
相关论文
共 67 条
[11]   Human blastocyst spontaneous collapse is associated with worse morphological quality and higher degeneration and aneuploidy rates: a comprehensive analysis standardized through artificial intelligence [J].
Cimadomo, Danilo ;
Marconetto, Anabella ;
Trio, Samuele ;
Chiappetta, Viviana ;
Innocenti, Federica ;
Albricci, Laura ;
Erlich, Itay ;
Ben-Meir, Assaf ;
Har-Vardi, Iris ;
Kantor, Ben ;
Sakov, Anat ;
Coticchio, Giovanni ;
Borini, Andrea ;
Ubaldi, Filippo Maria ;
Rienzi, Laura .
HUMAN REPRODUCTION, 2022, 37 (10) :2291-2306
[12]   Proposed guidelines on the nomenclature and annotation of dynamic human embryo monitoring by a time-lapse user group [J].
Ciray, H. Nadir ;
Campbell, Alison ;
Agerholm, Inge Errebo ;
Aguilar, Jesus ;
Chamayou, Sandrine ;
Esbert, Marga ;
Sayed, Shabana .
HUMAN REPRODUCTION, 2014, 29 (12) :2650-2660
[13]   Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018 [J].
Curchoe, Carol Lynn ;
Bormann, Charles L. .
JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2019, 36 (04) :591-600
[14]   Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF [J].
Diakiw, S. M. ;
Hall, J. M. M. ;
VerMilyea, M. D. ;
Amin, J. ;
Aizpurua, J. ;
Giardini, L. ;
Briones, Y. G. ;
Lim, A. Y. X. ;
Dakka, M. A. ;
Nguyen, T., V ;
Perugini, D. ;
Perugini, M. .
HUMAN REPRODUCTION, 2022, 37 (08) :1746-1759
[15]   Artificial intelligence in the embryology laboratory: a review [J].
Dimitriadis, Irene ;
Zaninovic, Nikica ;
Chavez Badiola, Alejandro ;
Bormann, Charles L. .
REPRODUCTIVE BIOMEDICINE ONLINE, 2022, 44 (03) :435-448
[16]   HEMIGEN: Human Embryo Image Generator Based on Generative Adversarial Networks [J].
Dirvanauskas, Darius ;
Maskeliunas, Rytis ;
Raudonis, Vidas ;
Damasevicius, Robertas ;
Scherer, Rafal .
SENSORS, 2019, 19 (16)
[17]  
Doshi-Velez F, 2017, ARXIV
[18]   A hybrid artificial intelligence model leverages multi-centric clinical data to improve fetal heart rate pregnancy prediction across time-lapse systems [J].
Duval, A. ;
Nogueira, D. ;
Dissler, N. ;
Filali, M. Maskani ;
Matos, F. Delestro ;
Chansel-Debordeaux, L. ;
Ferrer-Buitrago, M. ;
Ferrer, E. ;
Antequera, V ;
Ruiz-Jorro, M. ;
Papaxanthos, A. ;
Ouchchane, H. ;
Keppi, B. ;
Prima, P-y ;
Regnier-Vigouroux, G. ;
Trebesses, L. ;
Geoffroy-Siraudin, C. ;
Zaragoza, S. ;
Scalici, E. ;
Sanguinet, P. ;
Cassagnard, N. ;
Ozanon, C. ;
de la Fuente, A. ;
Gomez, E. ;
Boyer, M. Gervoise ;
Boyer, P. ;
Ricciarelli, E. ;
Pollet-Villard, X. ;
Boussommier-Calleja, A. .
HUMAN REPRODUCTION, 2023, 38 (04) :596-608
[19]   A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation [J].
Enatsu, Noritoshi ;
Miyatsuka, Isao ;
An, Le My ;
Inubushi, Miki ;
Enatsu, Kunihiro ;
Otsuki, Junko ;
Iwasaki, Toshiroh ;
Kokeguchi, Shoji ;
Shiotani, Masahide .
REPRODUCTIVE MEDICINE AND BIOLOGY, 2022, 21 (01)
[20]   Automated identification of blastocyst regions at different development stages [J].
Farias, Adolfo Flores-Saiffe ;
Chavez-Badiola, Alejandro ;
Mendizabal-Ruiz, Gerardo ;
Valencia-Murillo, Roberto ;
Drakeley, Andrew ;
Cohen, Jacques ;
Cardenas-Esparza, Elizabeth .
SCIENTIFIC REPORTS, 2023, 13 (01)