Estimates of Lebesgue constants for Lagrange interpolation processes by rational functions under mild restrictions to their fixed poles

被引:0
作者
Kalmykov, Sergei [1 ,2 ]
Lukashov, Alexey [3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, CMA Shanghai, Shanghai, Peoples R China
[2] Keldysh Inst Appl Math, Moscow 125047, Russia
[3] Natl Res Univ, Moscow Inst Phys & Technol, Moscow, Russia
关键词
Interpolation; Lebesgue constant; Inverse polynomial images; Chebyshev-Markov fractions;
D O I
10.1016/j.jat.2023.105909
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We estimate the Lebesgue constants for Lagrange interpolation processes on one or several intervals by rational functions with fixed poles. We admit that the poles have finitely many accumulation points on the intervals. To prove it we use an analog of the inverse polynomial image method for rational functions with fixed poles. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:15
相关论文
共 26 条
  • [1] Borwein P., 1995, Graduate Texts in Mathematics, V161, P480
  • [2] Dzyadyk V.K., 1995, Approximation Methods for Solutions of Differential and Integral Equations, P325
  • [3] Goluzin G.M., 1969, Translations of Mathematical Monographs, V26, DOI DOI 10.1090/MMONO/026
  • [4] Grinshpun Z.S., 1992, Ortogonal'Nye Mnogochleny BernshteinaSege, P176
  • [5] Inverse polynomial mappings and interpolation on several intervals
    Kroo, A.
    Szabados, J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) : 1165 - 1179
  • [6] Lev B., 1996, Ann. Numer. Math, V4, P111
  • [7] Lukashov A., 1998, Izv. Vyssh. Uchebn. Zaved. Mat., P35
  • [8] [Лукашов А.Л. Lukashov A.L.], 2005, [Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика, Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika], V5, P34, DOI 10.18500/1816-9791-2005-5-1-34-47
  • [9] The order of Lebesgue constant of Lagrange interpolation on several intervals
    Lukashov, A. L.
    Szabados, J.
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 103 - 111
  • [10] Lukashov A.L., 2004, Izv. Ross. Akad. Nauk Ser. Mat., V68, P115