Belief structure-based Pythagorean fuzzy entropy and its application in multi-source information fusion

被引:5
|
作者
Mao, Kun [1 ]
Wang, Yanni [2 ]
Ye, Jiangang [3 ]
Zhou, Wen [3 ]
Lin, Yu [4 ]
Fang, Bin [5 ]
机构
[1] Quzhou Coll Technol, Fac Informat Engn, Quzhou 324000, Peoples R China
[2] Capital Univ Phys Educ & Sports, Inst Artificial Intelligence Sports, Beijing 100086, Peoples R China
[3] Quzhou Special Equipment Inspect Ctr, R&D Ctr, Quzhou 324000, Peoples R China
[4] Wenzhou Med Univ, Peoples Hosp, Quzhou Affiliated Hosp, Dept Hlth Management Ctr, Quzhou 324000, Peoples R China
[5] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Dempster-Shafer theory; Pythagorean fuzzy set; Uncertainty measure; Information fusion; Fractal-based belief entropy; SETS;
D O I
10.1016/j.asoc.2023.110860
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-standard fuzzy sets play a significant role in uncertainty modeling. In addition to membership and non-membership degree, how to handle the hesitant degree is the key issue in the uncertain information process. In this paper, we model the Pythagorean fuzzy set (PFS) under the belief structure and measure its uncertainty based on fractal-based belief (FB) entropy. A novel fuzzy entropy for PFS called belief structure -based Pythagorean fuzzy (BSPF) entropy is proposed, whose effectiveness and advantages are proven based on mathematical analysis and numerical examples. A comparative analysis between BSPF entropy and other methods shows that BSPF entropy can obtain more reasonable results. Besides, a BSPF entropy-based multi -criteria decision-making (MCDM) method and a classification method are designed to solve practical problems. The experimental results demonstrate the effectiveness of these two proposed methods in solving real-world problems of decision-making and classification.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Research on Fatigue Driving Assessment Based on Multi-source Information Fusion
    Fang Bin
    Yang Jiangyong
    PROCEEDINGS OF 2017 9TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2017, : 385 - 390
  • [22] Contour-based multi-source information fusion for motion segmentation
    Xu Yi
    Yu Huimin
    Zhang Zhongfei
    CHINESE JOURNAL OF ELECTRONICS, 2008, 17 (03): : 464 - 470
  • [23] Location Recommendation of Digital Signage Based on Multi-Source Information Fusion
    Xie, Xiaolan
    Zhang, Xun
    Fu, Jingying
    Jiang, Dong
    Yu, Chongchong
    Jin, Min
    SUSTAINABILITY, 2018, 10 (07)
  • [24] Fault Diagnosis of Brake Train based on Multi-Source Information Fusion
    Jin, Yongze
    Xie, Guo
    Hei, Xinhong
    Duan, Haitao
    Chen, Wenbin
    Ma, Jialin
    Zang, Qianbo
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2934 - 2938
  • [25] Application of the Technology of Multi-source Information Fusion in Industrial Monitoring and Fault Diagnosis
    Liu, Xiangqi
    Chong, Xiangting
    Zhen, Chenggang
    RESOURCES AND SUSTAINABLE DEVELOPMENT, PTS 1-4, 2013, 734-737 : 3089 - +
  • [26] A Novel Multi-Source Information Fusion Method Based on Dependency Interval
    Xu, Weihua
    Lin, Yufei
    Wang, Na
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 3180 - 3194
  • [27] Friend recommendation in social networks based on multi-source information fusion
    Cheng, Shulin
    Zhang, Bofeng
    Zou, Guobing
    Huang, Mingqing
    Zhang, Zhu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (05) : 1003 - 1024
  • [28] Busbar fault diagnosis method based on multi-source information fusion
    Jiang, Xuebao
    Cao, Haiou
    Zhou, Chenbin
    Ren, Xuchao
    Shen, Jiaoxiao
    Yu, Jiayan
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [29] Analysis and Comparison of Multi-Source Information Fusion Technologies
    Li, Yang
    Zhao, Ming
    Xu, Mengyao
    Liu, Yunfei
    Qian, Yuchen
    FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 1057 - 1063
  • [30] Fault diagnosis using multi-source information fusion
    Fan, Xianfeng
    Zuo, Ming J.
    2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 275 - 280