Multistage Laser-Plasma Acceleration of Ultrashort Electron and Positron Bunches

被引:2
作者
Veisman, M. E. [1 ,2 ]
Umarov, I. R. [1 ,2 ,3 ]
Pugacheva, D. V. [1 ]
Andreev, N. E. [1 ,2 ,3 ]
机构
[1] Russian Acad Sci, Joint Inst High Temp, Moscow, Russia
[2] Russian Acad Sci, Inst Appl Phys, Fed Res Ctr, Nizhnii Novgorod, Russia
[3] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
基金
俄罗斯基础研究基金会;
关键词
wakefield; laser-plasma acceleration of electrons and positrons; multistage accelerators; WAKE-FIELD; INTENSE; PROPAGATION; PULSES; GENERATION; EMITTANCE;
D O I
10.3103/S1068335623180124
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A version is proposed of multistage electron acceleration based on a multichannel laser facility with a peak laser pulse power of up to 15 PW in one channel. In contrast to strongly nonlinear acceleration regimes with the presence of electron density cavitation on the radiation propagation axis, the proposed moderately nonlinear regime will make it possible to achieve not only sufficiently high energies (60 to 100 GeV at three to five accelerator stages), but also a high quality of accelerated electron bunches (relative energy spread of maximum 1%, and normalized emittance maximum 1 mm . mrad), which is important for numerous applications such as precision tests of the Standard Model, experiments on quantum electrodynamics (generation of electron-positron pairs), and experiments on the development of high-power sources of short-wavelength (gamma quanta) radiation. The implementation of the project will allow to closely approach the studies that are important for the development of theory and modern practical applications. A preliminary analytical analysis and numerical simulation confirm the achievability of these parameters of electron bunches in case of the implementation of the proposed project.
引用
收藏
页码:S724 / S733
页数:10
相关论文
共 51 条
[1]   Analysis of laser wakefield dynamics in capillary tubes [J].
Andreev, N. E. ;
Cassou, K. ;
Wojda, F. ;
Genoud, G. ;
Burza, M. ;
Lundh, O. ;
Persson, A. ;
Cros, B. ;
Fortov, V. E. ;
Wahlstrom, C-G .
NEW JOURNAL OF PHYSICS, 2010, 12
[2]  
Andreev N. E., 1999, Physics-Uspekhi, V42, P49, DOI 10.1070/PU1999v042n01ABEH000447
[3]   Guided propagation of short intense laser pulses and electron acceleration [J].
Andreev, NE ;
Kuznetsov, SV .
PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 :A39-A57
[4]   STIMULATED PROCESSES AND SELF-MODULATION OF A SHORT INTENSE LASER-PULSE IN THE LASER WAKE-FIELD ACCELERATOR [J].
ANDREEV, NE ;
KIRSANOV, VI ;
GORBUNOV, LM .
PHYSICS OF PLASMAS, 1995, 2 (06) :2573-2582
[5]   Laser wakefield structure in a plasma column created in capillary tubes [J].
Andreev, NE ;
Cros, B ;
Gorbunov, LM ;
Matthieussent, G ;
Mora, P ;
Ramazashvili, RR .
PHYSICS OF PLASMAS, 2002, 9 (09) :3999-4009
[6]   Structure of the wake field in plasma channels [J].
Andreev, NE ;
Gorbunov, LM ;
Kirsanov, VI ;
Nakajima, K ;
Ogata, A .
PHYSICS OF PLASMAS, 1997, 4 (04) :1145-1153
[7]  
[Anonymous], 1999, CERN Courier
[8]  
Assmann R, 2002, NUCL PHYS B-PROC SUP, V109, P17, DOI 10.1016/S0920-5632(02)90005-8
[9]  
Assmann W., 2020, The European Physical Journal Special Topics, V229, P3675, DOI DOI 10.1140/EPJST/E2020-000127-8
[10]   Electron-Positron Pair Flow and Current Composition in the Pulsar Magnetosphere [J].
Brambilla, Gabriele ;
Kalapotharakos, Constantinos ;
Timokhin, Andrey N. ;
Harding, Alice K. ;
Kazanas, Demosthenes .
ASTROPHYSICAL JOURNAL, 2018, 858 (02)