Deep neural network for modeling soliton dynamics in the mode-locked laser

被引:73
作者
Fang, Yin [1 ]
Han, Hao-Bin [1 ]
Bo, Wen-Bo [1 ]
Liu, Wei [1 ]
Wang, Ben-Hai [1 ]
Wang, Yue-Yue [1 ]
Dai, Chao-Qing [1 ]
机构
[1] Zhejiang A&F Univ, Coll Opt Mech & Elect Engn, Linan 311300, Peoples R China
基金
中国国家自然科学基金;
关键词
FIBER LASER; DESIGN;
D O I
10.1364/OL.482946
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Integrating the information of the first cycle of an optical pulse in a cavity into the input of a neural network, a bidirectional long short-term memory (Bi_LSTM) recurrent neural network (RNN) with an attention mechanism is proposed to predict the dynamics of a soliton from the detuning steady state to the stable mode-locked state. The training and testing are based on two typical nonlinear dynamics: the conventional soliton evolution from various saturation energies and soliton molecule evolution under different group velocity dispersion coefficients of optical fibers. In both cases, the root mean square error (RMSE) for 80% of the test samples is below 15%. In addition, the width of the conventional soliton pulse and the pulse interval of the soliton molecule predicted by the neural network are consistent with the experimental results. These results provide a new insight into the nonlinear dynamics modeling of the ultrafast fiber laser. & COPY; 2023 Optica Publishing Group
引用
收藏
页码:779 / 782
页数:4
相关论文
共 18 条
[1]   Deep learning models for optically characterizing 3D printers [J].
Chen, Danwu ;
Urban, Philipp .
OPTICS EXPRESS, 2021, 29 (02) :615-631
[2]   Predicting certain vector optical solitons via the conservation-law deep-learning method [J].
Fang, Yin ;
Wu, Gang-Zhou ;
Wen, Xue-Kun ;
Wang, Yue-Yue ;
Dai, Chao-Qing .
OPTICS AND LASER TECHNOLOGY, 2022, 155
[3]   Nonlinearity managed passively harmonic mode-locked Er-doped fiber laser based on carbon nanotube film [J].
Huang, Qianqian ;
Dai, Lilong ;
Rozhin, Aleksey ;
Al Araimi, Mohammed ;
Mou, Chengbo .
OPTICS LETTERS, 2021, 46 (11) :2638-2641
[4]   Machine learning-based pulse characterization in figure-eight mode-locked lasers [J].
Kokhanovskiy, Alexey ;
Bednyakova, Anastasia ;
Kuprikov, Evgeny ;
Ivanenko, Aleksey ;
Dyatlov, Mikhail ;
Lotkov, Daniil ;
Kobtsev, Sergey ;
Turitsyn, Sergey .
OPTICS LETTERS, 2019, 44 (13) :3410-3413
[5]   Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers [J].
Li, Caiyun ;
He, Jiangyong ;
He, Ruijing ;
Liu, Yange ;
Yue, Yang ;
Liu, Weiwei ;
Zhang, Luhe ;
Zhu, Longfei ;
Zhou, Mengjie ;
Zhu, Kaiyan ;
Wang, Zhi .
APL PHOTONICS, 2020, 5 (11)
[6]   Bidirectional LSTM with attention mechanism and convolutional layer for text classification [J].
Liu, Gang ;
Guo, Jiabao .
NEUROCOMPUTING, 2019, 337 :325-338
[7]   Design and analysis of recurrent neural networks for ultrafast optical pulse nonlinear propagation [J].
Martins, Gustavo R. ;
Silva, Luis C. B. ;
Segatto, Marcelo E., V ;
Rocha, Helder R. O. ;
Castellani, Carlos E. S. .
OPTICS LETTERS, 2022, 47 (21) :5489-5492
[8]   Ultrashort-pulse fiber ring lasers [J].
Nelson, LE ;
Jones, DJ ;
Tamura, K ;
Haus, HA ;
Ippen, EP .
APPLIED PHYSICS B-LASERS AND OPTICS, 1997, 65 (02) :277-294
[9]   Intelligent programmable mode-locked fiber laser with a human-like algorithm [J].
Pu, Guoqing ;
Yi, Lilin ;
Zhang, Li ;
Hu, Weisheng .
OPTICA, 2019, 6 (03) :362-369
[10]   Visible-Wavelength Spatiotemporal Mode-Locked Fiber Laser Delivering 9 ps, 4 nJ Pulses at 635 nm [J].
Ruan, Qiujun ;
Xiao, Xiaosheng ;
Zou, Jinhai ;
Wang, Hang ;
Fan, Shuzheng ;
Li, Tianran ;
Li, Jin ;
Dong, Zhipeng ;
Cai, Zhiping ;
Luo, Zhengqian .
LASER & PHOTONICS REVIEWS, 2022, 16 (07)